HIM-self / src /core /emotional_intelligence.py
Takk8IS
Initial HIM implementation
fbebf66
raw
history blame
1.2 kB
import torch
import numpy as np
from dataclasses import dataclass
from typing import Dict, List, Optional
@dataclass
class EmotionalState:
vector: torch.Tensor # 128-dimensional emotional state
intensity: float
valence: float
arousal: float
dominance: float
class EmotionalProcessor:
def __init__(self):
self.emotional_memory = EmotionalMemory()
self.state_analyzer = EmotionalStateAnalyzer()
self.response_generator = EmotionalResponseGenerator()
def process_emotional_context(self, input_data: Dict[str, Any]) -> EmotionalState:
context_vector = self._extract_emotional_context(input_data)
current_state = self.state_analyzer.analyze(context_vector)
self.emotional_memory.update(current_state)
return self._generate_emotional_response(current_state)
def _extract_emotional_context(self, input_data: Dict[str, Any]) -> torch.Tensor:
return torch.cat([
self._process_linguistic_affect(input_data.get('text')),
self._process_social_context(input_data.get('social')),
self._process_environmental_factors(input_data.get('environment'))
])