Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
from dataclasses import dataclass | |
from typing import Dict, List, Optional | |
class EmotionalState: | |
vector: torch.Tensor # 128-dimensional emotional state | |
intensity: float | |
valence: float | |
arousal: float | |
dominance: float | |
class EmotionalProcessor: | |
def __init__(self): | |
self.emotional_memory = EmotionalMemory() | |
self.state_analyzer = EmotionalStateAnalyzer() | |
self.response_generator = EmotionalResponseGenerator() | |
def process_emotional_context(self, input_data: Dict[str, Any]) -> EmotionalState: | |
context_vector = self._extract_emotional_context(input_data) | |
current_state = self.state_analyzer.analyze(context_vector) | |
self.emotional_memory.update(current_state) | |
return self._generate_emotional_response(current_state) | |
def _extract_emotional_context(self, input_data: Dict[str, Any]) -> torch.Tensor: | |
return torch.cat([ | |
self._process_linguistic_affect(input_data.get('text')), | |
self._process_social_context(input_data.get('social')), | |
self._process_environmental_factors(input_data.get('environment')) | |
]) |