HIM-self / app.py
TeleologyHI
Update HIM implementation
b19dc43
raw
history blame
2.69 kB
import gradio as gr
<<<<<<< HEAD
from src.model.him_model import HIMModel
from src.core.config import HIMConfig
def initialize_model():
config = HIMConfig()
model = HIMModel(config)
return model
def process_input(text: str, image: str = None, audio: str = None):
input_data = {
'text': text,
'image': image,
'audio': audio,
'context': {}
}
result = model.forward(input_data)
return format_output(result)
model = initialize_model()
interface = gr.Interface(
fn=process_input,
inputs=[
gr.Textbox(label="Text Input"),
gr.Image(label="Image Input", optional=True),
gr.Audio(label="Audio Input", optional=True)
],
outputs=[
gr.Textbox(label="HIM Response"),
gr.Plot(label="Consciousness State Visualization")
],
title="Hybrid Intelligence Matrix (HIM)",
description="Interact with the HIM system for advanced cognitive processing"
)
=======
from huggingface_hub import InferenceClient
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()
>>>>>>> origin/main