Spaces:
Sleeping
Sleeping
from typing import Dict, Any | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
class AwarenessEngine: | |
def __init__(self): | |
self.attention_network = nn.Sequential( | |
nn.Linear(768, 512), | |
nn.ReLU(), | |
nn.Linear(512, 256) | |
) | |
self.awareness_state = {} | |
async def process(self, input_state: Dict[str, Any]) -> Dict[str, Any]: | |
attention_vector = self._compute_attention(input_state) | |
awareness_level = self._calculate_awareness(attention_vector) | |
return { | |
'attention_vector': attention_vector, | |
'awareness_level': awareness_level, | |
'state': self._update_awareness_state(awareness_level) | |
} | |
def _compute_attention(self, input_state: Dict[str, Any]) -> torch.Tensor: | |
# Attention computation implementation | |
return torch.zeros(256) | |
def _calculate_awareness(self, attention_vector: torch.Tensor) -> float: | |
# Awareness calculation implementation | |
return 0.8 | |
def _update_awareness_state(self, awareness_level: float) -> Dict[str, Any]: | |
# State update implementation | |
return {'current_level': awareness_level} |