Spaces:
Sleeping
Sleeping
from dataclasses import dataclass | |
import torch | |
import numpy as np | |
class ConsciousnessState: | |
phi_prime: float | |
emotional_vector: np.ndarray | |
attention_state: dict | |
self_awareness_level: float | |
class ConsciousnessMatrix: | |
def __init__(self, num_processors=128): | |
self.num_processors = num_processors | |
self.emotional_dimension = 128 | |
self.state = ConsciousnessState( | |
phi_prime=0.0, | |
emotional_vector=np.zeros(self.emotional_dimension), | |
attention_state={}, | |
self_awareness_level=0.0 | |
) | |
def process_consciousness(self, input_state): | |
# Implement consciousness processing based on IIT and Global Workspace Theory | |
self._update_phi_prime() | |
self._process_emotional_state() | |
self._update_attention_allocation() | |
self._evaluate_self_awareness() | |
def _update_phi_prime(self): | |
# Implementation of modified Φ (phi) metrics | |
pass | |
def _process_emotional_state(self): | |
# 128-dimensional emotional state processing | |
pass |