Spaces:
Sleeping
Sleeping
import numpy as np | |
from typing import Dict, List, Any | |
import torch | |
import torch.nn as nn | |
class PhiPrimeCalculator: | |
def __init__(self, num_dimensions: int = 128): | |
self.num_dimensions = num_dimensions | |
self.integration_threshold = 0.7 | |
self.information_metrics = InformationMetrics() | |
self.integration_analyzer = IntegrationAnalyzer() | |
def compute(self, system_state: Dict[str, Any]) -> float: | |
information_content = self.information_metrics.calculate(system_state) | |
integration_level = self.integration_analyzer.analyze(system_state) | |
return self._compute_phi_prime(information_content, integration_level) | |
def _compute_phi_prime(self, information: float, integration: float) -> float: | |
return (information * integration) / self.num_dimensions |