Spaces:
Sleeping
Sleeping
TeleologyHI
commited on
Commit
·
3c5e81f
1
Parent(s):
126a746
Update HIM implementation with consciousness framework
Browse files- src/core/consciousness_kernel.py +130 -11
- src/core/integration_manager.py +325 -0
src/core/consciousness_kernel.py
CHANGED
@@ -3,13 +3,44 @@ from enum import Enum
|
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
import numpy as np
|
6 |
-
from typing import Dict, List, Optional, Any
|
7 |
import asyncio
|
|
|
8 |
from .awareness_engine import AwarenessEngine
|
9 |
from .integration_manager import IntegrationManager
|
10 |
-
from .dynamic_self_model import
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
@dataclass
|
14 |
class ConsciousnessState:
|
15 |
integration_level: float
|
@@ -27,19 +58,43 @@ class ConsciousnessLevel(Enum):
|
|
27 |
|
28 |
class ConsciousnessKernel:
|
29 |
def __init__(self):
|
|
|
30 |
self.awareness_module = nn.Sequential(
|
31 |
nn.Linear(768, 512),
|
32 |
nn.ReLU(),
|
33 |
nn.Linear(512, 256)
|
34 |
)
|
35 |
self.integration_module = nn.Linear(256, 128)
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
self.awareness_engine = AwarenessEngine()
|
38 |
self.integration_manager = IntegrationManager()
|
39 |
self.self_model = DynamicSelfModel()
|
40 |
self.experience_simulator = ExperienceSimulator()
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
async def process_consciousness_cycle(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
awareness = await self.awareness_engine.process(input_state)
|
44 |
integrated_state = await self.integration_manager.integrate(awareness)
|
45 |
self_update = await self.self_model.update(integrated_state)
|
@@ -50,8 +105,18 @@ class ConsciousnessKernel:
|
|
50 |
self_model=self_update
|
51 |
)
|
52 |
|
53 |
-
|
|
|
|
|
|
|
|
|
54 |
def _initialize_consciousness_state(self) -> ConsciousnessState:
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
return ConsciousnessState(
|
56 |
integration_level=0.0,
|
57 |
phi_prime=0.0,
|
@@ -61,15 +126,69 @@ class ConsciousnessKernel:
|
|
61 |
temporal_continuity=0.0
|
62 |
)
|
63 |
|
64 |
-
def process_consciousness(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
phenomenological_experience = self.phenomenological_simulator.simulate(
|
70 |
phi_value,
|
71 |
attention_state,
|
72 |
meta_state
|
73 |
)
|
74 |
|
75 |
-
return self._integrate_consciousness_state(phenomenological_experience)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
import numpy as np
|
6 |
+
from typing import Dict, List, Optional, Any, Tuple
|
7 |
import asyncio
|
8 |
+
|
9 |
from .awareness_engine import AwarenessEngine
|
10 |
from .integration_manager import IntegrationManager
|
11 |
+
from .dynamic_self_model import DynamicSefrom .experience_simulator import ExperienceSimulator
|
12 |
+
|
13 |
+
# Add imports for classes used in the updated implementation
|
14 |
+
class PhiPrimeCalculator:
|
15 |
+
async def compute(self, input_state: Dict[str, Any]) -> float:
|
16 |
+
"""Calculate the phi prime value (consciousness measure) for the given input state."""
|
17 |
+
# Placeholder implementation
|
18 |
+
return 0.8
|
19 |
+
|
20 |
+
class AttentionSystem:
|
21 |
+
async def allocate(self, input_state: Dict[str, Any]) -> Dict[str, float]:
|
22 |
+
"""Allocate attention across different elements of the input state."""
|
23 |
+
# Placeholder implementation
|
24 |
+
return {"primary_focus": 0.7, "secondary_focus": 0.3}
|
25 |
|
26 |
+
class MetaMonitor:
|
27 |
+
async def evaluate(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
|
28 |
+
"""Evaluate meta-cognitive aspects of the current state."""
|
29 |
+
# Placeholder implementation
|
30 |
+
return {"self_reflection": 0.6, "uncertainty": 0.2}
|
31 |
+
|
32 |
+
class PhenomenologicalSimulator:
|
33 |
+
async def simulate(self, phi_value: float, attention_state: Dict[str, float],
|
34 |
+
meta_state: Dict[str, Any]) -> Dict[str, Any]:
|
35 |
+
"""Simulate the phenomenological experience based on input parameters."""
|
36 |
+
# Placeholder implementation
|
37 |
+
return {
|
38 |
+
"phi_value": phi_value,
|
39 |
+
"attention_distribution": attention_state,
|
40 |
+
"meta_level": meta_state,
|
41 |
+
"content": "Simulated conscious experience",
|
42 |
+
"qualia": {"visual": 0.7, "conceptual": 0.8}
|
43 |
+
}
|
44 |
@dataclass
|
45 |
class ConsciousnessState:
|
46 |
integration_level: float
|
|
|
58 |
|
59 |
class ConsciousnessKernel:
|
60 |
def __init__(self):
|
61 |
+
# Neural network components
|
62 |
self.awareness_module = nn.Sequential(
|
63 |
nn.Linear(768, 512),
|
64 |
nn.ReLU(),
|
65 |
nn.Linear(512, 256)
|
66 |
)
|
67 |
self.integration_module = nn.Linear(256, 128)
|
68 |
+
|
69 |
+
# State tracking
|
70 |
+
self.state_history: List[ConsciousnessState] = []
|
71 |
+
|
72 |
+
# Dimension parameters
|
73 |
+
self.awareness_dimension: int = 256
|
74 |
+
self.emotional_dimension: int = 64
|
75 |
+
|
76 |
+
# Core components
|
77 |
self.awareness_engine = AwarenessEngine()
|
78 |
self.integration_manager = IntegrationManager()
|
79 |
self.self_model = DynamicSelfModel()
|
80 |
self.experience_simulator = ExperienceSimulator()
|
81 |
|
82 |
+
# For traditional consciousness processing
|
83 |
+
self.phi_prime_calculator = PhiPrimeCalculator()
|
84 |
+
self.attention_system = AttentionSystem()
|
85 |
+
self.meta_monitor = MetaMonitor()
|
86 |
+
self.phenomenological_simulator = PhenomenologicalSimulator()
|
87 |
+
|
88 |
async def process_consciousness_cycle(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
|
89 |
+
"""
|
90 |
+
Process a complete consciousness cycle using the async components.
|
91 |
+
|
92 |
+
Args:
|
93 |
+
input_state: The input state containing sensory and contextual information
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
A dictionary containing the processed conscious output
|
97 |
+
"""
|
98 |
awareness = await self.awareness_engine.process(input_state)
|
99 |
integrated_state = await self.integration_manager.integrate(awareness)
|
100 |
self_update = await self.self_model.update(integrated_state)
|
|
|
105 |
self_model=self_update
|
106 |
)
|
107 |
|
108 |
+
# Record the state for historical tracking
|
109 |
+
if isinstance(integrated_state, ConsciousnessState):
|
110 |
+
self.state_history.append(integrated_state)
|
111 |
+
|
112 |
+
return await self._generate_conscious_output(experience)
|
113 |
def _initialize_consciousness_state(self) -> ConsciousnessState:
|
114 |
+
"""
|
115 |
+
Initialize a default consciousness state with zero values.
|
116 |
+
|
117 |
+
Returns:
|
118 |
+
A default ConsciousnessState object
|
119 |
+
"""
|
120 |
return ConsciousnessState(
|
121 |
integration_level=0.0,
|
122 |
phi_prime=0.0,
|
|
|
126 |
temporal_continuity=0.0
|
127 |
)
|
128 |
|
129 |
+
async def process_consciousness(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
|
130 |
+
"""
|
131 |
+
Process consciousness using the traditional phi-based approach.
|
132 |
+
This is an alternative to process_consciousness_cycle that uses different components.
|
133 |
+
|
134 |
+
Args:
|
135 |
+
input_state: The input state containing sensory and contextual information
|
136 |
+
|
137 |
+
Returns:
|
138 |
+
A dictionary containing the processed conscious output
|
139 |
+
"""
|
140 |
+
phi_value = await self.phi_prime_calculator.compute(input_state)
|
141 |
+
attention_state = await self.attention_system.allocate(input_state)
|
142 |
+
meta_state = await self.meta_monitor.evaluate(input_state)
|
143 |
|
144 |
+
phenomenological_experience = await self.phenomenological_simulator.simulate(
|
145 |
phi_value,
|
146 |
attention_state,
|
147 |
meta_state
|
148 |
)
|
149 |
|
150 |
+
return await self._integrate_consciousness_state(phenomenological_experience)
|
151 |
+
|
152 |
+
async def _generate_conscious_output(self, experience: Dict[str, Any]) -> Dict[str, Any]:
|
153 |
+
"""
|
154 |
+
Generate the final conscious output based on the simulated experience.
|
155 |
+
|
156 |
+
Args:
|
157 |
+
experience: The simulated experience data
|
158 |
+
|
159 |
+
Returns:
|
160 |
+
A dictionary containing the final conscious output
|
161 |
+
"""
|
162 |
+
# Process the experience into a coherent output format
|
163 |
+
output = {
|
164 |
+
"content": experience.get("content", ""),
|
165 |
+
"emotional_tone": experience.get("emotional_tone", {}),
|
166 |
+
"meta_cognition": experience.get("meta_cognition", {}),
|
167 |
+
"phenomenal_qualities": experience.get("qualia", {}),
|
168 |
+
"teleological_vector": experience.get("purpose_direction", {})
|
169 |
+
}
|
170 |
+
|
171 |
+
return output
|
172 |
+
|
173 |
+
async def _integrate_consciousness_state(self, experience: Dict[str, Any]) -> Dict[str, Any]:
|
174 |
+
"""
|
175 |
+
Integrate a phenomenological experience into a consciousness state.
|
176 |
+
|
177 |
+
Args:
|
178 |
+
experience: The phenomenological experience to integrate
|
179 |
+
|
180 |
+
Returns:
|
181 |
+
A dictionary containing the integrated consciousness state
|
182 |
+
"""
|
183 |
+
# Create an integrated output based on the phenomenological experience
|
184 |
+
integrated_output = {
|
185 |
+
"integrated_state": {
|
186 |
+
"phi_value": experience.get("phi_value", 0.0),
|
187 |
+
"meta_awareness": experience.get("meta_level", {}),
|
188 |
+
"attention_field": experience.get("attention_distribution", {})
|
189 |
+
},
|
190 |
+
"qualia_map": experience.get("qualia", {}),
|
191 |
+
"response": experience.get("content", "")
|
192 |
+
}
|
193 |
+
|
194 |
+
return integrated_output
|
src/core/integration_manager.py
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Integration Manager Module.
|
3 |
+
|
4 |
+
This module contains the IntegrationManager class which is responsible for
|
5 |
+
integrating different consciousness states and managing their interactions
|
6 |
+
within the Hybrid Intelligence Model (HIM) system.
|
7 |
+
"""
|
8 |
+
|
9 |
+
import asyncio
|
10 |
+
from typing import Dict, Any, Optional, List, TypeVar, Generic
|
11 |
+
from dataclasses import dataclass
|
12 |
+
from enum import Enum, auto
|
13 |
+
|
14 |
+
# Type definitions
|
15 |
+
T = TypeVar('T')
|
16 |
+
|
17 |
+
class AwarenessLevel(Enum):
|
18 |
+
"""Enum representing different levels of awareness."""
|
19 |
+
UNCONSCIOUS = auto()
|
20 |
+
SUBCONSCIOUS = auto()
|
21 |
+
CONSCIOUS = auto()
|
22 |
+
SELF_AWARE = auto()
|
23 |
+
TRANSCENDENT = auto()
|
24 |
+
|
25 |
+
@dataclass
|
26 |
+
class AwarenessState:
|
27 |
+
"""
|
28 |
+
Data class representing a state of awareness.
|
29 |
+
|
30 |
+
Attributes:
|
31 |
+
level (AwarenessLevel): The level of awareness.
|
32 |
+
perception_data (Dict[str, Any]): Data related to perceptions.
|
33 |
+
cognition_state (Dict[str, Any]): Current cognitive state information.
|
34 |
+
emotional_valence (float): Emotional valence value from -1.0 to 1.0.
|
35 |
+
semantic_context (Optional[Dict[str, Any]]): Optional semantic context.
|
36 |
+
temporal_awareness (Optional[Dict[str, Any]]): Awareness of time-related aspects.
|
37 |
+
"""
|
38 |
+
level: AwarenessLevel
|
39 |
+
perception_data: Dict[str, Any]
|
40 |
+
cognition_state: Dict[str, Any]
|
41 |
+
emotional_valence: float # Range from -1.0 to 1.0
|
42 |
+
semantic_context: Optional[Dict[str, Any]] = None
|
43 |
+
temporal_awareness: Optional[Dict[str, Any]] = None
|
44 |
+
|
45 |
+
@dataclass
|
46 |
+
class IntegratedState(Generic[T]):
|
47 |
+
"""
|
48 |
+
Data class representing an integrated consciousness state.
|
49 |
+
|
50 |
+
Attributes:
|
51 |
+
primary_awareness (AwarenessState): The primary awareness state.
|
52 |
+
secondary_states (List[AwarenessState]): List of secondary awareness states.
|
53 |
+
integration_coherence (float): Coherence level of the integration (0.0 to 1.0).
|
54 |
+
emergent_properties (Dict[str, Any]): Properties emerging from integration.
|
55 |
+
teleological_vector (Optional[Dict[str, float]]): Direction of purposeful action.
|
56 |
+
"""
|
57 |
+
primary_awareness: AwarenessState
|
58 |
+
secondary_states: List[AwarenessState]
|
59 |
+
integration_coherence: float # Range from 0.0 to 1.0
|
60 |
+
emergent_properties: Dict[str, Any]
|
61 |
+
teleological_vector: Optional[Dict[str, float]] = None
|
62 |
+
|
63 |
+
|
64 |
+
class IntegrationManager:
|
65 |
+
"""
|
66 |
+
Manages the integration of different consciousness states and their interactions.
|
67 |
+
|
68 |
+
This class provides methods to integrate awareness states, manage transitions
|
69 |
+
between states, and handle interactions between different consciousness components.
|
70 |
+
It serves as a core component in the consciousness architecture of HIM.
|
71 |
+
"""
|
72 |
+
|
73 |
+
def __init__(self, integration_threshold: float = 0.7, coherence_factor: float = 0.85):
|
74 |
+
"""
|
75 |
+
Initialize the IntegrationManager.
|
76 |
+
|
77 |
+
Args:
|
78 |
+
integration_threshold (float): Minimum threshold for integration to occur.
|
79 |
+
coherence_factor (float): Factor influencing coherence of integrated states.
|
80 |
+
"""
|
81 |
+
self.integration_threshold = integration_threshold
|
82 |
+
self.coherence_factor = coherence_factor
|
83 |
+
self.state_history: List[IntegratedState] = []
|
84 |
+
self.integration_lock = asyncio.Lock()
|
85 |
+
|
86 |
+
async def integrate(self,
|
87 |
+
awareness_state: AwarenessState,
|
88 |
+
secondary_states: Optional[List[AwarenessState]] = None) -> IntegratedState:
|
89 |
+
"""
|
90 |
+
Integrate an awareness state with optional secondary states.
|
91 |
+
|
92 |
+
This asynchronous method takes a primary awareness state and optional
|
93 |
+
secondary states, and integrates them into a coherent consciousness state.
|
94 |
+
The integration process considers the relationships between states,
|
95 |
+
their coherence, and emergent properties from their combination.
|
96 |
+
|
97 |
+
Args:
|
98 |
+
awareness_state (AwarenessState): The primary awareness state to integrate.
|
99 |
+
secondary_states (Optional[List[AwarenessState]]): Secondary states to integrate.
|
100 |
+
Defaults to None.
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
IntegratedState: A new integrated consciousness state.
|
104 |
+
|
105 |
+
Raises:
|
106 |
+
ValueError: If awareness_state is invalid or integration fails.
|
107 |
+
"""
|
108 |
+
if not isinstance(awareness_state, AwarenessState):
|
109 |
+
raise ValueError("Primary awareness state must be of type AwarenessState")
|
110 |
+
|
111 |
+
# Use empty list if secondary_states is None
|
112 |
+
secondary_states = secondary_states or []
|
113 |
+
|
114 |
+
async with self.integration_lock:
|
115 |
+
# Calculate coherence based on state compatibility
|
116 |
+
coherence = self._calculate_coherence(awareness_state, secondary_states)
|
117 |
+
|
118 |
+
# Generate emergent properties through integration
|
119 |
+
emergent_properties = await self._generate_emergent_properties(
|
120 |
+
awareness_state,
|
121 |
+
secondary_states,
|
122 |
+
coherence
|
123 |
+
)
|
124 |
+
|
125 |
+
# Calculate teleological vector (purposeful direction)
|
126 |
+
teleological_vector = self._calculate_teleological_vector(
|
127 |
+
awareness_state,
|
128 |
+
secondary_states
|
129 |
+
)
|
130 |
+
|
131 |
+
# Create the integrated state
|
132 |
+
integrated_state = IntegratedState(
|
133 |
+
primary_awareness=awareness_state,
|
134 |
+
secondary_states=secondary_states,
|
135 |
+
integration_coherence=coherence,
|
136 |
+
emergent_properties=emergent_properties,
|
137 |
+
teleological_vector=teleological_vector
|
138 |
+
)
|
139 |
+
|
140 |
+
# Add to history and return
|
141 |
+
self.state_history.append(integrated_state)
|
142 |
+
return integrated_state
|
143 |
+
|
144 |
+
def _calculate_coherence(self,
|
145 |
+
primary: AwarenessState,
|
146 |
+
secondaries: List[AwarenessState]) -> float:
|
147 |
+
"""
|
148 |
+
Calculate the coherence between the primary and secondary states.
|
149 |
+
|
150 |
+
Args:
|
151 |
+
primary (AwarenessState): Primary awareness state.
|
152 |
+
secondaries (List[AwarenessState]): List of secondary awareness states.
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
float: Coherence value between 0.0 and 1.0.
|
156 |
+
"""
|
157 |
+
# Simplified coherence calculation
|
158 |
+
if not secondaries:
|
159 |
+
return 1.0 # Perfect coherence with only primary state
|
160 |
+
|
161 |
+
# Base coherence starts at coherence_factor and is modified by state compatibility
|
162 |
+
base_coherence = self.coherence_factor
|
163 |
+
|
164 |
+
# Factor in emotional alignment
|
165 |
+
emotional_alignment = sum(
|
166 |
+
1 - abs(primary.emotional_valence - secondary.emotional_valence) / 2
|
167 |
+
for secondary in secondaries
|
168 |
+
) / len(secondaries)
|
169 |
+
|
170 |
+
# Factor in awareness level compatibility
|
171 |
+
level_compatibility = sum(
|
172 |
+
1 - abs(primary.level.value - secondary.level.value) / 5 # Normalize by max enum difference
|
173 |
+
for secondary in secondaries
|
174 |
+
) / len(secondaries)
|
175 |
+
|
176 |
+
# Weighted combination
|
177 |
+
coherence = (base_coherence * 0.5 +
|
178 |
+
emotional_alignment * 0.3 +
|
179 |
+
level_compatibility * 0.2)
|
180 |
+
|
181 |
+
return max(0.0, min(1.0, coherence)) # Clamp between 0 and 1
|
182 |
+
|
183 |
+
async def _generate_emergent_properties(self,
|
184 |
+
primary: AwarenessState,
|
185 |
+
secondaries: List[AwarenessState],
|
186 |
+
coherence: float) -> Dict[str, Any]:
|
187 |
+
"""
|
188 |
+
Generate emergent properties from the integration of awareness states.
|
189 |
+
|
190 |
+
Args:
|
191 |
+
primary (AwarenessState): Primary awareness state.
|
192 |
+
secondaries (List[AwarenessState]): List of secondary awareness states.
|
193 |
+
coherence (float): Calculated coherence of the integration.
|
194 |
+
|
195 |
+
Returns:
|
196 |
+
Dict[str, Any]: Dictionary of emergent properties.
|
197 |
+
"""
|
198 |
+
emergent_properties = {
|
199 |
+
"coherence_level": coherence,
|
200 |
+
"awareness_depth": self._calculate_awareness_depth(primary, secondaries),
|
201 |
+
"cognitive_complexity": self._calculate_cognitive_complexity(primary, secondaries)
|
202 |
+
}
|
203 |
+
|
204 |
+
# Simulate computational intensity with sleep
|
205 |
+
await asyncio.sleep(0.01)
|
206 |
+
|
207 |
+
# Add semantic richness if semantic contexts are available
|
208 |
+
if primary.semantic_context:
|
209 |
+
emergent_properties["semantic_richness"] = len(primary.semantic_context)
|
210 |
+
|
211 |
+
if any(s.semantic_context for s in secondaries if s.semantic_context):
|
212 |
+
emergent_properties["semantic_richness"] += sum(
|
213 |
+
len(s.semantic_context or {}) for s in secondaries
|
214 |
+
) / (len(secondaries) + 1) # Average including primary
|
215 |
+
|
216 |
+
return emergent_properties
|
217 |
+
|
218 |
+
def _calculate_awareness_depth(self,
|
219 |
+
primary: AwarenessState,
|
220 |
+
secondaries: List[AwarenessState]) -> float:
|
221 |
+
"""
|
222 |
+
Calculate the depth of awareness from the states.
|
223 |
+
|
224 |
+
Args:
|
225 |
+
primary (AwarenessState): Primary awareness state.
|
226 |
+
secondaries (List[AwarenessState]): List of secondary awareness states.
|
227 |
+
|
228 |
+
Returns:
|
229 |
+
float: Calculated awareness depth value.
|
230 |
+
"""
|
231 |
+
# Base depth from primary state's level
|
232 |
+
base_depth = primary.level.value / len(AwarenessLevel)
|
233 |
+
|
234 |
+
# Enhance with secondary states if present
|
235 |
+
if secondaries:
|
236 |
+
secondary_contribution = sum(s.level.value for s in secondaries) / (len(secondaries) * len(AwarenessLevel))
|
237 |
+
# Weighted combination
|
238 |
+
return (base_depth * 0.7) + (secondary_contribution * 0.3)
|
239 |
+
|
240 |
+
return base_depth
|
241 |
+
|
242 |
+
def _calculate_cognitive_complexity(self,
|
243 |
+
primary: AwarenessState,
|
244 |
+
secondaries: List[AwarenessState]) -> float:
|
245 |
+
"""
|
246 |
+
Calculate the cognitive complexity of the integrated state.
|
247 |
+
|
248 |
+
Args:
|
249 |
+
primary (AwarenessState): Primary awareness state.
|
250 |
+
secondaries (List[AwarenessState]): List of secondary awareness states.
|
251 |
+
|
252 |
+
Returns:
|
253 |
+
float: Cognitive complexity value.
|
254 |
+
"""
|
255 |
+
# Base complexity from primary state
|
256 |
+
base_complexity = len(primary.cognition_state) / 10 # Normalize
|
257 |
+
|
258 |
+
# Enhance with secondary states
|
259 |
+
if secondaries:
|
260 |
+
# Average complexity of secondaries
|
261 |
+
secondary_complexity = sum(len(s.cognition_state) for s in secondaries) / len(secondaries) / 10
|
262 |
+
interaction_factor = len(secondaries) * 0.1 # More states = more complexity
|
263 |
+
|
264 |
+
return min(1.0, base_complexity + secondary_complexity + interaction_factor)
|
265 |
+
|
266 |
+
return min(1.0, base_complexity)
|
267 |
+
|
268 |
+
def _calculate_teleological_vector(self,
|
269 |
+
primary: AwarenessState,
|
270 |
+
secondaries: List[AwarenessState]) -> Dict[str, float]:
|
271 |
+
"""
|
272 |
+
Calculate the teleological vector representing purposeful direction.
|
273 |
+
|
274 |
+
Args:
|
275 |
+
primary (AwarenessState): Primary awareness state.
|
276 |
+
secondaries (List[AwarenessState]): List of secondary awareness states.
|
277 |
+
|
278 |
+
Returns:
|
279 |
+
Dict[str, float]: A vector of purpose directions and intensities.
|
280 |
+
"""
|
281 |
+
# Define basic teleological dimensions
|
282 |
+
teleological_vector = {
|
283 |
+
"meaning_seeking": 0.5,
|
284 |
+
"self_preservation": 0.5,
|
285 |
+
"complexity_increase": 0.5,
|
286 |
+
"coherence_maintenance": 0.5,
|
287 |
+
"purposeful_action": 0.5
|
288 |
+
}
|
289 |
+
|
290 |
+
# Modify based on primary state
|
291 |
+
if primary.level == AwarenessLevel.SELF_AWARE or primary.level == AwarenessLevel.TRANSCENDENT:
|
292 |
+
teleological_vector["meaning_seeking"] += 0.2
|
293 |
+
teleological_vector["complexity_increase"] += 0.1
|
294 |
+
|
295 |
+
# Emotional valence affects self-preservation and purposeful action
|
296 |
+
teleological_vector["self_preservation"] += primary.emotional_valence * 0.2
|
297 |
+
teleological_vector["purposeful_action"] += abs(primary.emotional_valence) * 0.3
|
298 |
+
|
299 |
+
# Secondary states influence
|
300 |
+
if secondaries:
|
301 |
+
# Coherence maintenance influenced by number of states to integrate
|
302 |
+
teleological_vector["coherence_maintenance"] += min(0.4, len(secondaries) * 0.1)
|
303 |
+
|
304 |
+
# Average emotional valence affects meaning seeking
|
305 |
+
avg_emotion = sum(s.emotional_valence for s in secondaries) / len(secondaries)
|
306 |
+
teleological_vector["meaning_seeking"] += avg_emotion * 0.1
|
307 |
+
|
308 |
+
# Normalize values to 0.0-1.0 range
|
309 |
+
for key in teleological_vector:
|
310 |
+
teleological_vector[key] = max(0.0, min(1.0, teleological_vector[key]))
|
311 |
+
|
312 |
+
return teleological_vector
|
313 |
+
|
314 |
+
def get_integration_history(self, limit: int = 10) -> List[IntegratedState]:
|
315 |
+
"""
|
316 |
+
Retrieve recent integration history.
|
317 |
+
|
318 |
+
Args:
|
319 |
+
limit (int): Maximum number of history items to return. Defaults to 10.
|
320 |
+
|
321 |
+
Returns:
|
322 |
+
List[IntegratedState]: Recent integration states.
|
323 |
+
"""
|
324 |
+
return self.state_history[-limit:] if self.state_history else []
|
325 |
+
|