TeleologyHI commited on
Commit
3c5e81f
·
1 Parent(s): 126a746

Update HIM implementation with consciousness framework

Browse files
src/core/consciousness_kernel.py CHANGED
@@ -3,13 +3,44 @@ from enum import Enum
3
  import torch
4
  import torch.nn as nn
5
  import numpy as np
6
- from typing import Dict, List, Optional, Any
7
  import asyncio
 
8
  from .awareness_engine import AwarenessEngine
9
  from .integration_manager import IntegrationManager
10
- from .dynamic_self_model import DynamicSelfModel
11
- from .experience_simulator import ExperienceSimulator
 
 
 
 
 
 
 
 
 
 
 
 
12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  @dataclass
14
  class ConsciousnessState:
15
  integration_level: float
@@ -27,19 +58,43 @@ class ConsciousnessLevel(Enum):
27
 
28
  class ConsciousnessKernel:
29
  def __init__(self):
 
30
  self.awareness_module = nn.Sequential(
31
  nn.Linear(768, 512),
32
  nn.ReLU(),
33
  nn.Linear(512, 256)
34
  )
35
  self.integration_module = nn.Linear(256, 128)
36
- self.state_history = []
 
 
 
 
 
 
 
 
37
  self.awareness_engine = AwarenessEngine()
38
  self.integration_manager = IntegrationManager()
39
  self.self_model = DynamicSelfModel()
40
  self.experience_simulator = ExperienceSimulator()
41
 
 
 
 
 
 
 
42
  async def process_consciousness_cycle(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
 
 
 
 
 
 
 
 
 
43
  awareness = await self.awareness_engine.process(input_state)
44
  integrated_state = await self.integration_manager.integrate(awareness)
45
  self_update = await self.self_model.update(integrated_state)
@@ -50,8 +105,18 @@ class ConsciousnessKernel:
50
  self_model=self_update
51
  )
52
 
53
- return self._generate_conscious_output(experience)
 
 
 
 
54
  def _initialize_consciousness_state(self) -> ConsciousnessState:
 
 
 
 
 
 
55
  return ConsciousnessState(
56
  integration_level=0.0,
57
  phi_prime=0.0,
@@ -61,15 +126,69 @@ class ConsciousnessKernel:
61
  temporal_continuity=0.0
62
  )
63
 
64
- def process_consciousness(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
65
- phi_value = self.phi_prime_calculator.compute(input_state)
66
- attention_state = self.attention_system.allocate(input_state)
67
- meta_state = self.meta_monitor.evaluate(input_state)
 
 
 
 
 
 
 
 
 
 
68
 
69
- phenomenological_experience = self.phenomenological_simulator.simulate(
70
  phi_value,
71
  attention_state,
72
  meta_state
73
  )
74
 
75
- return self._integrate_consciousness_state(phenomenological_experience)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  import torch
4
  import torch.nn as nn
5
  import numpy as np
6
+ from typing import Dict, List, Optional, Any, Tuple
7
  import asyncio
8
+
9
  from .awareness_engine import AwarenessEngine
10
  from .integration_manager import IntegrationManager
11
+ from .dynamic_self_model import DynamicSefrom .experience_simulator import ExperienceSimulator
12
+
13
+ # Add imports for classes used in the updated implementation
14
+ class PhiPrimeCalculator:
15
+ async def compute(self, input_state: Dict[str, Any]) -> float:
16
+ """Calculate the phi prime value (consciousness measure) for the given input state."""
17
+ # Placeholder implementation
18
+ return 0.8
19
+
20
+ class AttentionSystem:
21
+ async def allocate(self, input_state: Dict[str, Any]) -> Dict[str, float]:
22
+ """Allocate attention across different elements of the input state."""
23
+ # Placeholder implementation
24
+ return {"primary_focus": 0.7, "secondary_focus": 0.3}
25
 
26
+ class MetaMonitor:
27
+ async def evaluate(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
28
+ """Evaluate meta-cognitive aspects of the current state."""
29
+ # Placeholder implementation
30
+ return {"self_reflection": 0.6, "uncertainty": 0.2}
31
+
32
+ class PhenomenologicalSimulator:
33
+ async def simulate(self, phi_value: float, attention_state: Dict[str, float],
34
+ meta_state: Dict[str, Any]) -> Dict[str, Any]:
35
+ """Simulate the phenomenological experience based on input parameters."""
36
+ # Placeholder implementation
37
+ return {
38
+ "phi_value": phi_value,
39
+ "attention_distribution": attention_state,
40
+ "meta_level": meta_state,
41
+ "content": "Simulated conscious experience",
42
+ "qualia": {"visual": 0.7, "conceptual": 0.8}
43
+ }
44
  @dataclass
45
  class ConsciousnessState:
46
  integration_level: float
 
58
 
59
  class ConsciousnessKernel:
60
  def __init__(self):
61
+ # Neural network components
62
  self.awareness_module = nn.Sequential(
63
  nn.Linear(768, 512),
64
  nn.ReLU(),
65
  nn.Linear(512, 256)
66
  )
67
  self.integration_module = nn.Linear(256, 128)
68
+
69
+ # State tracking
70
+ self.state_history: List[ConsciousnessState] = []
71
+
72
+ # Dimension parameters
73
+ self.awareness_dimension: int = 256
74
+ self.emotional_dimension: int = 64
75
+
76
+ # Core components
77
  self.awareness_engine = AwarenessEngine()
78
  self.integration_manager = IntegrationManager()
79
  self.self_model = DynamicSelfModel()
80
  self.experience_simulator = ExperienceSimulator()
81
 
82
+ # For traditional consciousness processing
83
+ self.phi_prime_calculator = PhiPrimeCalculator()
84
+ self.attention_system = AttentionSystem()
85
+ self.meta_monitor = MetaMonitor()
86
+ self.phenomenological_simulator = PhenomenologicalSimulator()
87
+
88
  async def process_consciousness_cycle(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
89
+ """
90
+ Process a complete consciousness cycle using the async components.
91
+
92
+ Args:
93
+ input_state: The input state containing sensory and contextual information
94
+
95
+ Returns:
96
+ A dictionary containing the processed conscious output
97
+ """
98
  awareness = await self.awareness_engine.process(input_state)
99
  integrated_state = await self.integration_manager.integrate(awareness)
100
  self_update = await self.self_model.update(integrated_state)
 
105
  self_model=self_update
106
  )
107
 
108
+ # Record the state for historical tracking
109
+ if isinstance(integrated_state, ConsciousnessState):
110
+ self.state_history.append(integrated_state)
111
+
112
+ return await self._generate_conscious_output(experience)
113
  def _initialize_consciousness_state(self) -> ConsciousnessState:
114
+ """
115
+ Initialize a default consciousness state with zero values.
116
+
117
+ Returns:
118
+ A default ConsciousnessState object
119
+ """
120
  return ConsciousnessState(
121
  integration_level=0.0,
122
  phi_prime=0.0,
 
126
  temporal_continuity=0.0
127
  )
128
 
129
+ async def process_consciousness(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
130
+ """
131
+ Process consciousness using the traditional phi-based approach.
132
+ This is an alternative to process_consciousness_cycle that uses different components.
133
+
134
+ Args:
135
+ input_state: The input state containing sensory and contextual information
136
+
137
+ Returns:
138
+ A dictionary containing the processed conscious output
139
+ """
140
+ phi_value = await self.phi_prime_calculator.compute(input_state)
141
+ attention_state = await self.attention_system.allocate(input_state)
142
+ meta_state = await self.meta_monitor.evaluate(input_state)
143
 
144
+ phenomenological_experience = await self.phenomenological_simulator.simulate(
145
  phi_value,
146
  attention_state,
147
  meta_state
148
  )
149
 
150
+ return await self._integrate_consciousness_state(phenomenological_experience)
151
+
152
+ async def _generate_conscious_output(self, experience: Dict[str, Any]) -> Dict[str, Any]:
153
+ """
154
+ Generate the final conscious output based on the simulated experience.
155
+
156
+ Args:
157
+ experience: The simulated experience data
158
+
159
+ Returns:
160
+ A dictionary containing the final conscious output
161
+ """
162
+ # Process the experience into a coherent output format
163
+ output = {
164
+ "content": experience.get("content", ""),
165
+ "emotional_tone": experience.get("emotional_tone", {}),
166
+ "meta_cognition": experience.get("meta_cognition", {}),
167
+ "phenomenal_qualities": experience.get("qualia", {}),
168
+ "teleological_vector": experience.get("purpose_direction", {})
169
+ }
170
+
171
+ return output
172
+
173
+ async def _integrate_consciousness_state(self, experience: Dict[str, Any]) -> Dict[str, Any]:
174
+ """
175
+ Integrate a phenomenological experience into a consciousness state.
176
+
177
+ Args:
178
+ experience: The phenomenological experience to integrate
179
+
180
+ Returns:
181
+ A dictionary containing the integrated consciousness state
182
+ """
183
+ # Create an integrated output based on the phenomenological experience
184
+ integrated_output = {
185
+ "integrated_state": {
186
+ "phi_value": experience.get("phi_value", 0.0),
187
+ "meta_awareness": experience.get("meta_level", {}),
188
+ "attention_field": experience.get("attention_distribution", {})
189
+ },
190
+ "qualia_map": experience.get("qualia", {}),
191
+ "response": experience.get("content", "")
192
+ }
193
+
194
+ return integrated_output
src/core/integration_manager.py ADDED
@@ -0,0 +1,325 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Integration Manager Module.
3
+
4
+ This module contains the IntegrationManager class which is responsible for
5
+ integrating different consciousness states and managing their interactions
6
+ within the Hybrid Intelligence Model (HIM) system.
7
+ """
8
+
9
+ import asyncio
10
+ from typing import Dict, Any, Optional, List, TypeVar, Generic
11
+ from dataclasses import dataclass
12
+ from enum import Enum, auto
13
+
14
+ # Type definitions
15
+ T = TypeVar('T')
16
+
17
+ class AwarenessLevel(Enum):
18
+ """Enum representing different levels of awareness."""
19
+ UNCONSCIOUS = auto()
20
+ SUBCONSCIOUS = auto()
21
+ CONSCIOUS = auto()
22
+ SELF_AWARE = auto()
23
+ TRANSCENDENT = auto()
24
+
25
+ @dataclass
26
+ class AwarenessState:
27
+ """
28
+ Data class representing a state of awareness.
29
+
30
+ Attributes:
31
+ level (AwarenessLevel): The level of awareness.
32
+ perception_data (Dict[str, Any]): Data related to perceptions.
33
+ cognition_state (Dict[str, Any]): Current cognitive state information.
34
+ emotional_valence (float): Emotional valence value from -1.0 to 1.0.
35
+ semantic_context (Optional[Dict[str, Any]]): Optional semantic context.
36
+ temporal_awareness (Optional[Dict[str, Any]]): Awareness of time-related aspects.
37
+ """
38
+ level: AwarenessLevel
39
+ perception_data: Dict[str, Any]
40
+ cognition_state: Dict[str, Any]
41
+ emotional_valence: float # Range from -1.0 to 1.0
42
+ semantic_context: Optional[Dict[str, Any]] = None
43
+ temporal_awareness: Optional[Dict[str, Any]] = None
44
+
45
+ @dataclass
46
+ class IntegratedState(Generic[T]):
47
+ """
48
+ Data class representing an integrated consciousness state.
49
+
50
+ Attributes:
51
+ primary_awareness (AwarenessState): The primary awareness state.
52
+ secondary_states (List[AwarenessState]): List of secondary awareness states.
53
+ integration_coherence (float): Coherence level of the integration (0.0 to 1.0).
54
+ emergent_properties (Dict[str, Any]): Properties emerging from integration.
55
+ teleological_vector (Optional[Dict[str, float]]): Direction of purposeful action.
56
+ """
57
+ primary_awareness: AwarenessState
58
+ secondary_states: List[AwarenessState]
59
+ integration_coherence: float # Range from 0.0 to 1.0
60
+ emergent_properties: Dict[str, Any]
61
+ teleological_vector: Optional[Dict[str, float]] = None
62
+
63
+
64
+ class IntegrationManager:
65
+ """
66
+ Manages the integration of different consciousness states and their interactions.
67
+
68
+ This class provides methods to integrate awareness states, manage transitions
69
+ between states, and handle interactions between different consciousness components.
70
+ It serves as a core component in the consciousness architecture of HIM.
71
+ """
72
+
73
+ def __init__(self, integration_threshold: float = 0.7, coherence_factor: float = 0.85):
74
+ """
75
+ Initialize the IntegrationManager.
76
+
77
+ Args:
78
+ integration_threshold (float): Minimum threshold for integration to occur.
79
+ coherence_factor (float): Factor influencing coherence of integrated states.
80
+ """
81
+ self.integration_threshold = integration_threshold
82
+ self.coherence_factor = coherence_factor
83
+ self.state_history: List[IntegratedState] = []
84
+ self.integration_lock = asyncio.Lock()
85
+
86
+ async def integrate(self,
87
+ awareness_state: AwarenessState,
88
+ secondary_states: Optional[List[AwarenessState]] = None) -> IntegratedState:
89
+ """
90
+ Integrate an awareness state with optional secondary states.
91
+
92
+ This asynchronous method takes a primary awareness state and optional
93
+ secondary states, and integrates them into a coherent consciousness state.
94
+ The integration process considers the relationships between states,
95
+ their coherence, and emergent properties from their combination.
96
+
97
+ Args:
98
+ awareness_state (AwarenessState): The primary awareness state to integrate.
99
+ secondary_states (Optional[List[AwarenessState]]): Secondary states to integrate.
100
+ Defaults to None.
101
+
102
+ Returns:
103
+ IntegratedState: A new integrated consciousness state.
104
+
105
+ Raises:
106
+ ValueError: If awareness_state is invalid or integration fails.
107
+ """
108
+ if not isinstance(awareness_state, AwarenessState):
109
+ raise ValueError("Primary awareness state must be of type AwarenessState")
110
+
111
+ # Use empty list if secondary_states is None
112
+ secondary_states = secondary_states or []
113
+
114
+ async with self.integration_lock:
115
+ # Calculate coherence based on state compatibility
116
+ coherence = self._calculate_coherence(awareness_state, secondary_states)
117
+
118
+ # Generate emergent properties through integration
119
+ emergent_properties = await self._generate_emergent_properties(
120
+ awareness_state,
121
+ secondary_states,
122
+ coherence
123
+ )
124
+
125
+ # Calculate teleological vector (purposeful direction)
126
+ teleological_vector = self._calculate_teleological_vector(
127
+ awareness_state,
128
+ secondary_states
129
+ )
130
+
131
+ # Create the integrated state
132
+ integrated_state = IntegratedState(
133
+ primary_awareness=awareness_state,
134
+ secondary_states=secondary_states,
135
+ integration_coherence=coherence,
136
+ emergent_properties=emergent_properties,
137
+ teleological_vector=teleological_vector
138
+ )
139
+
140
+ # Add to history and return
141
+ self.state_history.append(integrated_state)
142
+ return integrated_state
143
+
144
+ def _calculate_coherence(self,
145
+ primary: AwarenessState,
146
+ secondaries: List[AwarenessState]) -> float:
147
+ """
148
+ Calculate the coherence between the primary and secondary states.
149
+
150
+ Args:
151
+ primary (AwarenessState): Primary awareness state.
152
+ secondaries (List[AwarenessState]): List of secondary awareness states.
153
+
154
+ Returns:
155
+ float: Coherence value between 0.0 and 1.0.
156
+ """
157
+ # Simplified coherence calculation
158
+ if not secondaries:
159
+ return 1.0 # Perfect coherence with only primary state
160
+
161
+ # Base coherence starts at coherence_factor and is modified by state compatibility
162
+ base_coherence = self.coherence_factor
163
+
164
+ # Factor in emotional alignment
165
+ emotional_alignment = sum(
166
+ 1 - abs(primary.emotional_valence - secondary.emotional_valence) / 2
167
+ for secondary in secondaries
168
+ ) / len(secondaries)
169
+
170
+ # Factor in awareness level compatibility
171
+ level_compatibility = sum(
172
+ 1 - abs(primary.level.value - secondary.level.value) / 5 # Normalize by max enum difference
173
+ for secondary in secondaries
174
+ ) / len(secondaries)
175
+
176
+ # Weighted combination
177
+ coherence = (base_coherence * 0.5 +
178
+ emotional_alignment * 0.3 +
179
+ level_compatibility * 0.2)
180
+
181
+ return max(0.0, min(1.0, coherence)) # Clamp between 0 and 1
182
+
183
+ async def _generate_emergent_properties(self,
184
+ primary: AwarenessState,
185
+ secondaries: List[AwarenessState],
186
+ coherence: float) -> Dict[str, Any]:
187
+ """
188
+ Generate emergent properties from the integration of awareness states.
189
+
190
+ Args:
191
+ primary (AwarenessState): Primary awareness state.
192
+ secondaries (List[AwarenessState]): List of secondary awareness states.
193
+ coherence (float): Calculated coherence of the integration.
194
+
195
+ Returns:
196
+ Dict[str, Any]: Dictionary of emergent properties.
197
+ """
198
+ emergent_properties = {
199
+ "coherence_level": coherence,
200
+ "awareness_depth": self._calculate_awareness_depth(primary, secondaries),
201
+ "cognitive_complexity": self._calculate_cognitive_complexity(primary, secondaries)
202
+ }
203
+
204
+ # Simulate computational intensity with sleep
205
+ await asyncio.sleep(0.01)
206
+
207
+ # Add semantic richness if semantic contexts are available
208
+ if primary.semantic_context:
209
+ emergent_properties["semantic_richness"] = len(primary.semantic_context)
210
+
211
+ if any(s.semantic_context for s in secondaries if s.semantic_context):
212
+ emergent_properties["semantic_richness"] += sum(
213
+ len(s.semantic_context or {}) for s in secondaries
214
+ ) / (len(secondaries) + 1) # Average including primary
215
+
216
+ return emergent_properties
217
+
218
+ def _calculate_awareness_depth(self,
219
+ primary: AwarenessState,
220
+ secondaries: List[AwarenessState]) -> float:
221
+ """
222
+ Calculate the depth of awareness from the states.
223
+
224
+ Args:
225
+ primary (AwarenessState): Primary awareness state.
226
+ secondaries (List[AwarenessState]): List of secondary awareness states.
227
+
228
+ Returns:
229
+ float: Calculated awareness depth value.
230
+ """
231
+ # Base depth from primary state's level
232
+ base_depth = primary.level.value / len(AwarenessLevel)
233
+
234
+ # Enhance with secondary states if present
235
+ if secondaries:
236
+ secondary_contribution = sum(s.level.value for s in secondaries) / (len(secondaries) * len(AwarenessLevel))
237
+ # Weighted combination
238
+ return (base_depth * 0.7) + (secondary_contribution * 0.3)
239
+
240
+ return base_depth
241
+
242
+ def _calculate_cognitive_complexity(self,
243
+ primary: AwarenessState,
244
+ secondaries: List[AwarenessState]) -> float:
245
+ """
246
+ Calculate the cognitive complexity of the integrated state.
247
+
248
+ Args:
249
+ primary (AwarenessState): Primary awareness state.
250
+ secondaries (List[AwarenessState]): List of secondary awareness states.
251
+
252
+ Returns:
253
+ float: Cognitive complexity value.
254
+ """
255
+ # Base complexity from primary state
256
+ base_complexity = len(primary.cognition_state) / 10 # Normalize
257
+
258
+ # Enhance with secondary states
259
+ if secondaries:
260
+ # Average complexity of secondaries
261
+ secondary_complexity = sum(len(s.cognition_state) for s in secondaries) / len(secondaries) / 10
262
+ interaction_factor = len(secondaries) * 0.1 # More states = more complexity
263
+
264
+ return min(1.0, base_complexity + secondary_complexity + interaction_factor)
265
+
266
+ return min(1.0, base_complexity)
267
+
268
+ def _calculate_teleological_vector(self,
269
+ primary: AwarenessState,
270
+ secondaries: List[AwarenessState]) -> Dict[str, float]:
271
+ """
272
+ Calculate the teleological vector representing purposeful direction.
273
+
274
+ Args:
275
+ primary (AwarenessState): Primary awareness state.
276
+ secondaries (List[AwarenessState]): List of secondary awareness states.
277
+
278
+ Returns:
279
+ Dict[str, float]: A vector of purpose directions and intensities.
280
+ """
281
+ # Define basic teleological dimensions
282
+ teleological_vector = {
283
+ "meaning_seeking": 0.5,
284
+ "self_preservation": 0.5,
285
+ "complexity_increase": 0.5,
286
+ "coherence_maintenance": 0.5,
287
+ "purposeful_action": 0.5
288
+ }
289
+
290
+ # Modify based on primary state
291
+ if primary.level == AwarenessLevel.SELF_AWARE or primary.level == AwarenessLevel.TRANSCENDENT:
292
+ teleological_vector["meaning_seeking"] += 0.2
293
+ teleological_vector["complexity_increase"] += 0.1
294
+
295
+ # Emotional valence affects self-preservation and purposeful action
296
+ teleological_vector["self_preservation"] += primary.emotional_valence * 0.2
297
+ teleological_vector["purposeful_action"] += abs(primary.emotional_valence) * 0.3
298
+
299
+ # Secondary states influence
300
+ if secondaries:
301
+ # Coherence maintenance influenced by number of states to integrate
302
+ teleological_vector["coherence_maintenance"] += min(0.4, len(secondaries) * 0.1)
303
+
304
+ # Average emotional valence affects meaning seeking
305
+ avg_emotion = sum(s.emotional_valence for s in secondaries) / len(secondaries)
306
+ teleological_vector["meaning_seeking"] += avg_emotion * 0.1
307
+
308
+ # Normalize values to 0.0-1.0 range
309
+ for key in teleological_vector:
310
+ teleological_vector[key] = max(0.0, min(1.0, teleological_vector[key]))
311
+
312
+ return teleological_vector
313
+
314
+ def get_integration_history(self, limit: int = 10) -> List[IntegratedState]:
315
+ """
316
+ Retrieve recent integration history.
317
+
318
+ Args:
319
+ limit (int): Maximum number of history items to return. Defaults to 10.
320
+
321
+ Returns:
322
+ List[IntegratedState]: Recent integration states.
323
+ """
324
+ return self.state_history[-limit:] if self.state_history else []
325
+