TeleologyHI commited on
Commit
80e5e3d
·
1 Parent(s): da4d45a
/n/Users/davidccavalcante/Takk/Hub/projects/TeleologyHI/HIM-self/src/core/emotional_intelligence.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class EmotionalProcessor:
2
+ def __init__(self):
3
+ self.emotion_encoder = nn.Sequential(
4
+ nn.Linear(768, 256),
5
+ nn.ReLU(),
6
+ nn.Linear(256, 128)
7
+ )
8
+ self.emotional_memory = {}
9
+ self.emotion_vectors = self._initialize_emotion_vectors()
10
+
11
+ async def process_emotional_context(self, input_data: Dict[str, Any]) -> EmotionalState:
12
+ """Process emotional context to extract emotional state."""
13
+ # Extract context features
14
+ context_vector = await self._encode_context(input_data)
15
+
16
+ # Analyze emotional content
17
+ emotions = await self._analyze_emotions(context_vector)
18
+
19
+ # Update emotional memory
20
+ await self._update_emotional_memory(emotions)
21
+
22
+ return EmotionalState(
23
+ valence=emotions.get("valence", 0.0),
24
+ arousal=emotions.get("arousal", 0.0),
25
+ dominance=emotions.get("dominance", 0.0),
26
+ emotions=list(emotions.get("categories", [])),
27
+ intensity=emotions.get("intensities", {})
28
+ )
29
+
30
+ def _initialize_emotion_vectors(self) -> Dict[str, List[float]]:
31
+ """Initialize base emotion vectors."""
32
+ return {
33
+ "joy": [0.8, 0.7, 0.6],
34
+ "sadness": [-0.7, -0.3, -0.4],
35
+ "anger": [-0.6, 0.8, 0.7],
36
+ "fear": [-0.8, 0.5, -0.7],
37
+ "surprise": [0.4, 0.8, 0.1],
38
+ "disgust": [-0.8, 0.2, 0.3]
39
+ }
40
+
41
+ async def _encode_context(self, input_data: Dict[str, Any]) -> torch.Tensor:
42
+ """Encode input context into emotion space."""
43
+ # Placeholder: Convert input data to tensor
44
+ context_tensor = torch.randn(768) # Simulated input tensor
45
+ return self.emotion_encoder(context_tensor)
46
+
47
+ async def _analyze_emotions(self, context_vector: torch.Tensor) -> Dict[str, Any]:
48
+ """Analyze encoded context for emotional content."""
49
+ # Placeholder: Emotion analysis logic
50
+ return {
51
+ "valence": 0.7,
52
+ "arousal": 0.6,
53
+ "dominance": 0.5,
54
+ "categories": ["joy", "surprise"],
55
+ "intensities": {"joy": 0.8, "surprise": 0.4}
56
+ }
57
+
58
+ async def _update_emotional_memory(self, emotions: Dict[str, Any]):
59
+ """Update emotional memory with new emotional state."""
60
+ # Placeholder: Memory update logic
61
+ self.emotional_memory["last_state"] = emotions
/n/Users/davidccavalcante/Takk/Hub/projects/TeleologyHI/HIM-self/src/core/theory_of_mind.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, Any, List
2
+ import torch
3
+ import torch.nn as nn
4
+ import asyncio
5
+ import numpy as np
6
+ async def model_agent_mind(self,
7
+ agent_data: Dict[str, Any],
8
+ context: Dict[str, Any] = None) -> Dict[str, Any]:
9
+ """Model the mental state, beliefs, and behavior of an agent."""
10
+ # Process agent data to infer mental state
11
+ mental_state = await self._process_mental_state(agent_data)
12
+
13
+ # Update belief system based on mental state and context
14
+ beliefs = await self._update_belief_system(mental_state, context)
15
+
16
+ # Predict future behavior based on mental state and beliefs
17
+ behavior = await self._predict_behavior(mental_state, beliefs)
18
+
19
+ return {
20
+ 'mental_state': mental_state,
21
+ 'beliefs': beliefs,
22
+ 'predicted_behavior': behavior
23
+ }
24
+
25
+ async def _process_mental_state(self, agent_data: Dict[str, Any]) -> Dict[str, float]:
26
+ """Process agent data to infer mental state."""
27
+ # Convert input data to tensor
28
+ agent_tensor = torch.randn(768) # Simulated input tensor
29
+
30
+ # Process through neural network
31
+ mental_state_vector = self.mental_state_model(agent_tensor)
32
+
33
+ # Convert to interpretable format
34
+ return {
35
+ "attention": float(mental_state_vector[0]),
36
+ "intention": float(mental_state_vector[1]),
37
+ "knowledge": float(mental_state_vector[2]),
38
+ "emotional_state": float(mental_state_vector[3])
39
+ }
40
+
41
+ async def _update_belief_system(self,
42
+ mental_state: Dict[str, float],
43
+ context: Dict[str, Any] = None) -> Dict[str, Any]:
44
+ """Update belief system based on new mental state."""
45
+ beliefs = {
46
+ "current_goals": ["understand", "communicate"],
47
+ "knowledge_state": mental_state["knowledge"],
48
+ "attention_focus": mental_state["attention"],
49
+ "context_awareness": 0.8
50
+ }
51
+
52
+ self.belief_system = beliefs
53
+ return beliefs
54
+
55
+ async def _predict_behavior(self,
56
+ mental_state: Dict[str, float],
57
+ beliefs: Dict[str, Any]) -> Dict[str, float]:
58
+ """Predict future behavior based on mental state and beliefs."""
59
+ return {
60
+ "cooperation_likelihood": 0.8,
61
+ "communication_style": 0.7,
62
+ "decision_confidence": 0.9,
63
+ "response_time": 0.6
64
+ }
src/core/emotional_intelligence.py CHANGED
@@ -1,6 +1,8 @@
1
  from typing import Dict, Any, List
2
  from dataclasses import dataclass
3
-
 
 
4
  @dataclass
5
  class EmotionalState:
6
  valence: float # Positive/negative dimension
 
1
  from typing import Dict, Any, List
2
  from dataclasses import dataclass
3
+ import torch
4
+ import torch.nn as nn
5
+ import asyncio
6
  @dataclass
7
  class EmotionalState:
8
  valence: float # Positive/negative dimension
src/model/him_model.py CHANGED
@@ -17,9 +17,9 @@ class HIMModel(nn.Module):
17
  self.semiotic_processor = SemioticProcessor()
18
 
19
  async def generate_response(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
20
- consciousness_state = self.consciousness_kernel.process_consciousness_cycle(input_data)
21
- emotional_context = self.emotional_processor.process_emotional_context(input_data)
22
- social_understanding = self.theory_of_mind.model_agent_mind(input_data)
23
  semiotic_analysis = await self.semiotic_processor.process(input_data)
24
 
25
  return self._integrate_outputs(
 
17
  self.semiotic_processor = SemioticProcessor()
18
 
19
  async def generate_response(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
20
+ consciousness_state = await self.consciousness_kernel.process_consciousness_cycle(input_data)
21
+ emotional_context = await self.emotional_processor.process_emotional_context(input_data)
22
+ social_understanding = await self.theory_of_mind.model_agent_mind(input_data)
23
  semiotic_analysis = await self.semiotic_processor.process(input_data)
24
 
25
  return self._integrate_outputs(