Spaces:
Sleeping
Sleeping
TeleologyHI
commited on
Commit
·
80e5e3d
1
Parent(s):
da4d45a
up
Browse files
/n/Users/davidccavalcante/Takk/Hub/projects/TeleologyHI/HIM-self/src/core/emotional_intelligence.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class EmotionalProcessor:
|
2 |
+
def __init__(self):
|
3 |
+
self.emotion_encoder = nn.Sequential(
|
4 |
+
nn.Linear(768, 256),
|
5 |
+
nn.ReLU(),
|
6 |
+
nn.Linear(256, 128)
|
7 |
+
)
|
8 |
+
self.emotional_memory = {}
|
9 |
+
self.emotion_vectors = self._initialize_emotion_vectors()
|
10 |
+
|
11 |
+
async def process_emotional_context(self, input_data: Dict[str, Any]) -> EmotionalState:
|
12 |
+
"""Process emotional context to extract emotional state."""
|
13 |
+
# Extract context features
|
14 |
+
context_vector = await self._encode_context(input_data)
|
15 |
+
|
16 |
+
# Analyze emotional content
|
17 |
+
emotions = await self._analyze_emotions(context_vector)
|
18 |
+
|
19 |
+
# Update emotional memory
|
20 |
+
await self._update_emotional_memory(emotions)
|
21 |
+
|
22 |
+
return EmotionalState(
|
23 |
+
valence=emotions.get("valence", 0.0),
|
24 |
+
arousal=emotions.get("arousal", 0.0),
|
25 |
+
dominance=emotions.get("dominance", 0.0),
|
26 |
+
emotions=list(emotions.get("categories", [])),
|
27 |
+
intensity=emotions.get("intensities", {})
|
28 |
+
)
|
29 |
+
|
30 |
+
def _initialize_emotion_vectors(self) -> Dict[str, List[float]]:
|
31 |
+
"""Initialize base emotion vectors."""
|
32 |
+
return {
|
33 |
+
"joy": [0.8, 0.7, 0.6],
|
34 |
+
"sadness": [-0.7, -0.3, -0.4],
|
35 |
+
"anger": [-0.6, 0.8, 0.7],
|
36 |
+
"fear": [-0.8, 0.5, -0.7],
|
37 |
+
"surprise": [0.4, 0.8, 0.1],
|
38 |
+
"disgust": [-0.8, 0.2, 0.3]
|
39 |
+
}
|
40 |
+
|
41 |
+
async def _encode_context(self, input_data: Dict[str, Any]) -> torch.Tensor:
|
42 |
+
"""Encode input context into emotion space."""
|
43 |
+
# Placeholder: Convert input data to tensor
|
44 |
+
context_tensor = torch.randn(768) # Simulated input tensor
|
45 |
+
return self.emotion_encoder(context_tensor)
|
46 |
+
|
47 |
+
async def _analyze_emotions(self, context_vector: torch.Tensor) -> Dict[str, Any]:
|
48 |
+
"""Analyze encoded context for emotional content."""
|
49 |
+
# Placeholder: Emotion analysis logic
|
50 |
+
return {
|
51 |
+
"valence": 0.7,
|
52 |
+
"arousal": 0.6,
|
53 |
+
"dominance": 0.5,
|
54 |
+
"categories": ["joy", "surprise"],
|
55 |
+
"intensities": {"joy": 0.8, "surprise": 0.4}
|
56 |
+
}
|
57 |
+
|
58 |
+
async def _update_emotional_memory(self, emotions: Dict[str, Any]):
|
59 |
+
"""Update emotional memory with new emotional state."""
|
60 |
+
# Placeholder: Memory update logic
|
61 |
+
self.emotional_memory["last_state"] = emotions
|
/n/Users/davidccavalcante/Takk/Hub/projects/TeleologyHI/HIM-self/src/core/theory_of_mind.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Any, List
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import asyncio
|
5 |
+
import numpy as np
|
6 |
+
async def model_agent_mind(self,
|
7 |
+
agent_data: Dict[str, Any],
|
8 |
+
context: Dict[str, Any] = None) -> Dict[str, Any]:
|
9 |
+
"""Model the mental state, beliefs, and behavior of an agent."""
|
10 |
+
# Process agent data to infer mental state
|
11 |
+
mental_state = await self._process_mental_state(agent_data)
|
12 |
+
|
13 |
+
# Update belief system based on mental state and context
|
14 |
+
beliefs = await self._update_belief_system(mental_state, context)
|
15 |
+
|
16 |
+
# Predict future behavior based on mental state and beliefs
|
17 |
+
behavior = await self._predict_behavior(mental_state, beliefs)
|
18 |
+
|
19 |
+
return {
|
20 |
+
'mental_state': mental_state,
|
21 |
+
'beliefs': beliefs,
|
22 |
+
'predicted_behavior': behavior
|
23 |
+
}
|
24 |
+
|
25 |
+
async def _process_mental_state(self, agent_data: Dict[str, Any]) -> Dict[str, float]:
|
26 |
+
"""Process agent data to infer mental state."""
|
27 |
+
# Convert input data to tensor
|
28 |
+
agent_tensor = torch.randn(768) # Simulated input tensor
|
29 |
+
|
30 |
+
# Process through neural network
|
31 |
+
mental_state_vector = self.mental_state_model(agent_tensor)
|
32 |
+
|
33 |
+
# Convert to interpretable format
|
34 |
+
return {
|
35 |
+
"attention": float(mental_state_vector[0]),
|
36 |
+
"intention": float(mental_state_vector[1]),
|
37 |
+
"knowledge": float(mental_state_vector[2]),
|
38 |
+
"emotional_state": float(mental_state_vector[3])
|
39 |
+
}
|
40 |
+
|
41 |
+
async def _update_belief_system(self,
|
42 |
+
mental_state: Dict[str, float],
|
43 |
+
context: Dict[str, Any] = None) -> Dict[str, Any]:
|
44 |
+
"""Update belief system based on new mental state."""
|
45 |
+
beliefs = {
|
46 |
+
"current_goals": ["understand", "communicate"],
|
47 |
+
"knowledge_state": mental_state["knowledge"],
|
48 |
+
"attention_focus": mental_state["attention"],
|
49 |
+
"context_awareness": 0.8
|
50 |
+
}
|
51 |
+
|
52 |
+
self.belief_system = beliefs
|
53 |
+
return beliefs
|
54 |
+
|
55 |
+
async def _predict_behavior(self,
|
56 |
+
mental_state: Dict[str, float],
|
57 |
+
beliefs: Dict[str, Any]) -> Dict[str, float]:
|
58 |
+
"""Predict future behavior based on mental state and beliefs."""
|
59 |
+
return {
|
60 |
+
"cooperation_likelihood": 0.8,
|
61 |
+
"communication_style": 0.7,
|
62 |
+
"decision_confidence": 0.9,
|
63 |
+
"response_time": 0.6
|
64 |
+
}
|
src/core/emotional_intelligence.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
from typing import Dict, Any, List
|
2 |
from dataclasses import dataclass
|
3 |
-
|
|
|
|
|
4 |
@dataclass
|
5 |
class EmotionalState:
|
6 |
valence: float # Positive/negative dimension
|
|
|
1 |
from typing import Dict, Any, List
|
2 |
from dataclasses import dataclass
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import asyncio
|
6 |
@dataclass
|
7 |
class EmotionalState:
|
8 |
valence: float # Positive/negative dimension
|
src/model/him_model.py
CHANGED
@@ -17,9 +17,9 @@ class HIMModel(nn.Module):
|
|
17 |
self.semiotic_processor = SemioticProcessor()
|
18 |
|
19 |
async def generate_response(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
|
20 |
-
consciousness_state = self.consciousness_kernel.process_consciousness_cycle(input_data)
|
21 |
-
emotional_context = self.emotional_processor.process_emotional_context(input_data)
|
22 |
-
social_understanding = self.theory_of_mind.model_agent_mind(input_data)
|
23 |
semiotic_analysis = await self.semiotic_processor.process(input_data)
|
24 |
|
25 |
return self._integrate_outputs(
|
|
|
17 |
self.semiotic_processor = SemioticProcessor()
|
18 |
|
19 |
async def generate_response(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
|
20 |
+
consciousness_state = await self.consciousness_kernel.process_consciousness_cycle(input_data)
|
21 |
+
emotional_context = await self.emotional_processor.process_emotional_context(input_data)
|
22 |
+
social_understanding = await self.theory_of_mind.model_agent_mind(input_data)
|
23 |
semiotic_analysis = await self.semiotic_processor.process(input_data)
|
24 |
|
25 |
return self._integrate_outputs(
|