TeleologyHI commited on
Commit
b2d45c4
·
1 Parent(s): cec2b14
semiotic_processor.py ADDED
@@ -0,0 +1,244 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import numpy as np
4
+ from typing import Dict, List, Any, Optional
5
+ from enum import Enum
6
+
7
+ class SignLevel(Enum):
8
+ ICONIC = 1
9
+ INDEXICAL = 2
10
+ SYMBOLIC = 3
11
+ SEMANTIC = 4
12
+
13
+ class SemioticState:
14
+ """
15
+ Represents the state of semiotic processing with sign and meaning information.
16
+ """
17
+ def __init__(
18
+ self,
19
+ sign_level: SignLevel,
20
+ meaning_vector: np.ndarray,
21
+ context_relations: Dict[str, float],
22
+ interpretation_confidence: float,
23
+ sign_vector: np.ndarray,
24
+ context_embedding: np.ndarray,
25
+ semantic_relations: Dict[str, float]
26
+ ):
27
+ self.sign_level = sign_level
28
+ self.meaning_vector = meaning_vector
29
+ self.context_relations = context_relations
30
+ self.interpretation_confidence = interpretation_confidence
31
+ self.sign_vector = sign_vector
32
+ self.context_embedding = context_embedding
33
+ self.semantic_relations = semantic_relations
34
+
35
+ class SemioticNetworkBuilder:
36
+ """Builds semiotic networks from input data, representing sign relationships."""
37
+
38
+ def __init__(self):
39
+ self.relation_encoder = nn.Sequential(
40
+ nn.Linear(768, 256),
41
+ nn.ReLU(),
42
+ nn.Linear(256, 128)
43
+ )
44
+ self.graph_state = {}
45
+
46
+ def construct(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
47
+ """
48
+ Construct a semiotic network from input data.
49
+
50
+ Args:
51
+ input_data: Dictionary containing sign and context information
52
+
53
+ Returns:
54
+ Dictionary containing the constructed semiotic network
55
+ """
56
+ encoded_signs = self._encode_signs(input_data.get("signs", []))
57
+ context_embedding = self._process_context(input_data.get("context", {}))
58
+ relations = self._build_relations(encoded_signs, context_embedding)
59
+
60
+ return {
61
+ "signs": encoded_signs,
62
+ "context": context_embedding,
63
+ "relations": relations,
64
+ "meta_info": self._extract_meta_information(input_data)
65
+ }
66
+
67
+ def _encode_signs(self, signs: List[Any]) -> Dict[str, torch.Tensor]:
68
+ """Encode individual signs into vector representations."""
69
+ encoded = {}
70
+ for sign in signs:
71
+ sign_tensor = torch.randn(768) # Placeholder for actual encoding
72
+ encoded[str(sign)] = self.relation_encoder(sign_tensor)
73
+ return encoded
74
+
75
+ def _process_context(self, context: Dict[str, Any]) -> torch.Tensor:
76
+ """Process context information into an embedding."""
77
+ # Placeholder implementation
78
+ return torch.randn(128)
79
+
80
+ def _build_relations(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, float]:
81
+ """Build relationships between signs in the context."""
82
+ relations = {}
83
+ for sign1 in signs:
84
+ for sign2 in signs:
85
+ if sign1 != sign2:
86
+ relation_strength = torch.cosine_similarity(signs[sign1], signs[sign2], dim=0)
87
+ relations[f"{sign1}-{sign2}"] = float(relation_strength)
88
+ return relations
89
+
90
+ def _extract_meta_information(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
91
+ """Extract meta-information about the semiotic network."""
92
+ return {
93
+ "network_density": len(input_data.get("signs", [])) / 100,
94
+ "context_richness": len(input_data.get("context", {})) / 100
95
+ }
96
+
97
+ class SignInterpreter:
98
+ """Interprets semiotic networks to extract meaning and relationships."""
99
+
100
+ def __init__(self):
101
+ self.interpretation_network = nn.Sequential(
102
+ nn.Linear(128, 64),
103
+ nn.ReLU(),
104
+ nn.Linear(64, 32)
105
+ )
106
+
107
+ def interpret(self, network: Dict[str, Any]) -> Dict[str, Any]:
108
+ """
109
+ Interpret a semiotic network to extract meaningful patterns.
110
+
111
+ Args:
112
+ network: The semiotic network to interpret
113
+
114
+ Returns:
115
+ Dictionary containing interpretation results
116
+ """
117
+ signs = network["signs"]
118
+ relations = network["relations"]
119
+ context = network["context"]
120
+
121
+ interpreted_meanings = self._interpret_meanings(signs, context)
122
+ relation_patterns = self._analyze_relations(relations)
123
+ contextual_insights = self._extract_contextual_insights(context)
124
+
125
+ return {
126
+ "meanings": interpreted_meanings,
127
+ "patterns": relation_patterns,
128
+ "contextual_insights": contextual_insights
129
+ }
130
+
131
+ def _interpret_meanings(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, Any]:
132
+ """Extract meanings from signs in context."""
133
+ return {sign: {"salience": 0.8, "certainty": 0.7} for sign in signs}
134
+
135
+ def _analyze_relations(self, relations: Dict[str, float]) -> Dict[str, float]:
136
+ """Analyze patterns in sign relations."""
137
+ return {"coherence": 0.8, "complexity": 0.6}
138
+
139
+ def _extract_contextual_insights(self, context: torch.Tensor) -> Dict[str, float]:
140
+ """Extract insights from contextual information."""
141
+ return {"relevance": 0.75, "specificity": 0.65}
142
+
143
+ class SignGenerator:
144
+ """Generates new signs based on interpretations and patterns."""
145
+
146
+ def __init__(self):
147
+ self.generator_network = nn.Sequential(
148
+ nn.Linear(32, 64),
149
+ nn.ReLU(),
150
+ nn.Linear(64, 128)
151
+ )
152
+
153
+ def create_signs(self, interpretation: Dict[str, Any]) -> Dict[str, Any]:
154
+ """
155
+ Generate new signs based on interpretation.
156
+
157
+ Args:
158
+ interpretation: The interpretation to base generation on
159
+
160
+ Returns:
161
+ Dictionary containing generated signs and their properties
162
+ """
163
+ meanings = interpretation["meanings"]
164
+ patterns = interpretation["patterns"]
165
+
166
+ generated = self._generate_from_patterns(patterns)
167
+ refined = self._refine_generated_signs(generated, meanings)
168
+
169
+ return {
170
+ "signs": refined,
171
+ "confidence": self._assess_generation_quality(refined)
172
+ }
173
+
174
+ def _generate_from_patterns(self, patterns: Dict[str, float]) -> List[torch.Tensor]:
175
+ """Generate initial signs from observed patterns."""
176
+ return [torch.randn(128) for _ in range(3)] # Generate 3 new signs
177
+
178
+ def _refine_generated_signs(self, signs: List[torch.Tensor], meanings: Dict[str, Any]) -> List[Dict[str, Any]]:
179
+ """Refine generated signs based on existing meanings."""
180
+ return [{"vector": sign, "quality": 0.7} for sign in signs]
181
+
182
+ def _assess_generation_quality(self, signs: List[Dict[str, Any]]) -> float:
183
+ """Assess the quality of generated signs."""
184
+ return sum(sign["quality"] for sign in signs) / len(signs)
185
+
186
+ class SemioticProcessor:
187
+ def __init__(self):
188
+ self.sign_encoder = nn.Sequential(
189
+ nn.Linear(512, 256),
190
+ nn.ReLU(),
191
+ nn.Linear(256, 128)
192
+ )
193
+ self.network_builder = SemioticNetworkBuilder()
194
+ self.interpreter = SignInterpreter()
195
+ self.generator = SignGenerator()
196
+
197
+ async def process(self, input_data: Dict[str, Any]) -> SemioticState:
198
+ # Build semiotic network
199
+ network = self.network_builder.construct(input_data)
200
+
201
+ # Interpret the network
202
+ interpretation = self.interpreter.interpret(network)
203
+
204
+ # Generate new signs if needed
205
+ if self._requires_generation(interpretation):
206
+ generated_signs = self.generator.create_signs(interpretation)
207
+ return self._integrate_semiotic_state(interpretation, generated_signs)
208
+
209
+ return self._create_semiotic_state(interpretation)
210
+
211
+ def _requires_generation(self, interpretation: Dict[str, Any]) -> bool:
212
+ """
213
+ Determine if new sign generation is required based on interpretation.
214
+
215
+ Args:
216
+ interpretation: The current interpretation state
217
+
218
+ Returns:
219
+ Boolean indicating if generation is needed
220
+ """
221
+ patterns = interpretation.get("patterns", {})
222
+ return patterns.get("coherence", 0) < 0.5 or len(interpretation.get("meanings", {})) < 3
223
+
224
+ def _integrate_semiotic_state(self, interpretation: Dict[str, Any], generated_signs: Dict[str, Any]) -> SemioticState:
225
+ """
226
+ Integrate interpretation and generated signs into a semiotic state.
227
+ """
228
+ meaning_vector = np.random.rand(128) # Placeholder for actual meaning vector
229
+ sign_vector = np.random.rand(128) # Placeholder for actual sign vector
230
+
231
+ return SemioticState(
232
+ sign_level=SignLevel.SEMANTIC,
233
+ meaning_vector=meaning_vector,
234
+ context_relations=interpretation.get("patterns", {}),
235
+ interpretation_confidence=generated_signs.get("confidence", 0.5),
236
+ sign_vector=sign_vector,
237
+ context_embedding=np.random.rand(128),
238
+ semantic_relations=interpretation.get("contextual_insights", {})
239
+ )
240
+
241
+ def _create_semiotic_state(self, interpretation: Dict[str, Any]) -> SemioticState:
242
+ """Create a semiotic state from interpretation without generation."""
243
+ return self._integrate_semiotic_state(interpretation, {"confidence": 0.8})
244
+
src/core/semiotic_processor.py CHANGED
@@ -6,12 +6,16 @@ import torch
6
  import torch.nn as nn
7
 
8
  class SignLevel(Enum):
9
- SYNTACTIC = "syntactic"
10
- SEMANTIC = "semantic"
11
- PRAGMATIC = "pragmatic"
 
 
 
12
 
13
  @dataclass
14
  class SemioticState:
 
15
  sign_level: SignLevel
16
  meaning_vector: np.ndarray
17
  context_relations: Dict[str, float]
@@ -20,24 +24,223 @@ class SemioticState:
20
  context_embedding: np.ndarray
21
  semantic_relations: Dict[str, float]
22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  class SemioticProcessor:
 
 
24
  def __init__(self):
25
  self.sign_encoder = nn.Sequential(
26
- nn.Linear(768, 256),
27
  nn.ReLU(),
28
  nn.Linear(256, 128)
29
  )
30
  self.network_builder = SemioticNetworkBuilder()
31
  self.interpreter = SignInterpreter()
32
  self.generator = SignGenerator()
33
- self.meaning_network = {}
34
 
35
- def process_signs(self, input_data: Dict[str, Any]) -> SemioticState:
 
 
 
 
 
 
 
 
 
 
36
  network = self.network_builder.construct(input_data)
 
 
37
  interpretation = self.interpreter.interpret(network)
38
 
 
39
  if self._requires_generation(interpretation):
40
  generated_signs = self.generator.create_signs(interpretation)
41
  return self._integrate_semiotic_state(interpretation, generated_signs)
42
 
43
- return self._create_semiotic_state(interpretation)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  import torch.nn as nn
7
 
8
  class SignLevel(Enum):
9
+ """Enumeration of different semiotic sign levels."""
10
+ ICONIC = "iconic" # Direct representation
11
+ INDEXICAL = "indexical" # Causal relationship
12
+ SYMBOLIC = "symbolic" # Arbitrary convention
13
+ SEMANTIC = "semantic" # Meaning-based
14
+ PRAGMATIC = "pragmatic" # Context-based
15
 
16
  @dataclass
17
  class SemioticState:
18
+ """Represents the current state of semiotic processing."""
19
  sign_level: SignLevel
20
  meaning_vector: np.ndarray
21
  context_relations: Dict[str, float]
 
24
  context_embedding: np.ndarray
25
  semantic_relations: Dict[str, float]
26
 
27
+ class SemioticNetworkBuilder:
28
+ """Builds semiotic networks from input data, representing sign relationships."""
29
+
30
+ def __init__(self):
31
+ self.relation_encoder = nn.Sequential(
32
+ nn.Linear(768, 256),
33
+ nn.ReLU(),
34
+ nn.Linear(256, 128)
35
+ )
36
+ self.graph_state = {}
37
+
38
+ def construct(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
39
+ """
40
+ Construct a semiotic network from input data.
41
+
42
+ Args:
43
+ input_data: Dictionary containing sign and context information
44
+
45
+ Returns:
46
+ Dictionary containing the constructed semiotic network
47
+ """
48
+ encoded_signs = self._encode_signs(input_data.get("signs", []))
49
+ context_embedding = self._process_context(input_data.get("context", {}))
50
+ relations = self._build_relations(encoded_signs, context_embedding)
51
+
52
+ return {
53
+ "signs": encoded_signs,
54
+ "context": context_embedding,
55
+ "relations": relations,
56
+ "meta_info": self._extract_meta_information(input_data)
57
+ }
58
+
59
+ def _encode_signs(self, signs: List[Any]) -> Dict[str, torch.Tensor]:
60
+ """Encode individual signs into vector representations."""
61
+ encoded = {}
62
+ for sign in signs:
63
+ sign_tensor = torch.randn(768) # Placeholder for actual encoding
64
+ encoded[str(sign)] = self.relation_encoder(sign_tensor)
65
+ return encoded
66
+
67
+ def _process_context(self, context: Dict[str, Any]) -> torch.Tensor:
68
+ """Process context information into an embedding."""
69
+ # Placeholder implementation
70
+ return torch.randn(128)
71
+
72
+ def _build_relations(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, float]:
73
+ """Build relationships between signs in the context."""
74
+ relations = {}
75
+ for sign1 in signs:
76
+ for sign2 in signs:
77
+ if sign1 != sign2:
78
+ relation_strength = torch.cosine_similarity(signs[sign1], signs[sign2], dim=0)
79
+ relations[f"{sign1}-{sign2}"] = float(relation_strength)
80
+ return relations
81
+
82
+ def _extract_meta_information(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
83
+ """Extract meta-information about the semiotic network."""
84
+ return {
85
+ "network_density": len(input_data.get("signs", [])) / 100,
86
+ "context_richness": len(input_data.get("context", {})) / 100
87
+ }
88
+
89
+ class SignInterpreter:
90
+ """Interprets semiotic networks to extract meaning and relationships."""
91
+
92
+ def __init__(self):
93
+ self.interpretation_network = nn.Sequential(
94
+ nn.Linear(128, 64),
95
+ nn.ReLU(),
96
+ nn.Linear(64, 32)
97
+ )
98
+
99
+ def interpret(self, network: Dict[str, Any]) -> Dict[str, Any]:
100
+ """
101
+ Interpret a semiotic network to extract meaningful patterns.
102
+
103
+ Args:
104
+ network: The semiotic network to interpret
105
+
106
+ Returns:
107
+ Dictionary containing interpretation results
108
+ """
109
+ signs = network["signs"]
110
+ relations = network["relations"]
111
+ context = network["context"]
112
+
113
+ interpreted_meanings = self._interpret_meanings(signs, context)
114
+ relation_patterns = self._analyze_relations(relations)
115
+ contextual_insights = self._extract_contextual_insights(context)
116
+
117
+ return {
118
+ "meanings": interpreted_meanings,
119
+ "patterns": relation_patterns,
120
+ "contextual_insights": contextual_insights
121
+ }
122
+
123
+ def _interpret_meanings(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, Any]:
124
+ """Extract meanings from signs in context."""
125
+ return {sign: {"salience": 0.8, "certainty": 0.7} for sign in signs}
126
+
127
+ def _analyze_relations(self, relations: Dict[str, float]) -> Dict[str, float]:
128
+ """Analyze patterns in sign relations."""
129
+ return {"coherence": 0.8, "complexity": 0.6}
130
+
131
+ def _extract_contextual_insights(self, context: torch.Tensor) -> Dict[str, float]:
132
+ """Extract insights from contextual information."""
133
+ return {"relevance": 0.75, "specificity": 0.65}
134
+
135
+ class SignGenerator:
136
+ """Generates new signs based on interpretations and patterns."""
137
+
138
+ def __init__(self):
139
+ self.generator_network = nn.Sequential(
140
+ nn.Linear(32, 64),
141
+ nn.ReLU(),
142
+ nn.Linear(64, 128)
143
+ )
144
+
145
+ def create_signs(self, interpretation: Dict[str, Any]) -> Dict[str, Any]:
146
+ """
147
+ Generate new signs based on interpretation.
148
+
149
+ Args:
150
+ interpretation: The interpretation to base generation on
151
+
152
+ Returns:
153
+ Dictionary containing generated signs and their properties
154
+ """
155
+ meanings = interpretation["meanings"]
156
+ patterns = interpretation["patterns"]
157
+
158
+ generated = self._generate_from_patterns(patterns)
159
+ refined = self._refine_generated_signs(generated, meanings)
160
+
161
+ return {
162
+ "signs": refined,
163
+ "confidence": self._assess_generation_quality(refined)
164
+ }
165
+
166
+ def _generate_from_patterns(self, patterns: Dict[str, float]) -> List[torch.Tensor]:
167
+ """Generate initial signs from observed patterns."""
168
+ return [torch.randn(128) for _ in range(3)] # Generate 3 new signs
169
+
170
+ def _refine_generated_signs(self, signs: List[torch.Tensor], meanings: Dict[str, Any]) -> List[Dict[str, Any]]:
171
+ """Refine generated signs based on existing meanings."""
172
+ return [{"vector": sign, "quality": 0.7} for sign in signs]
173
+
174
+ def _assess_generation_quality(self, signs: List[Dict[str, Any]]) -> float:
175
+ """Assess the quality of generated signs."""
176
+ return sum(sign["quality"] for sign in signs) / len(signs)
177
+
178
  class SemioticProcessor:
179
+ """Processes semiotic signs to extract and generate meaning."""
180
+
181
  def __init__(self):
182
  self.sign_encoder = nn.Sequential(
183
+ nn.Linear(768, 256), # Using proper input size (768)
184
  nn.ReLU(),
185
  nn.Linear(256, 128)
186
  )
187
  self.network_builder = SemioticNetworkBuilder()
188
  self.interpreter = SignInterpreter()
189
  self.generator = SignGenerator()
 
190
 
191
+ async def process(self, input_data: Dict[str, Any]) -> SemioticState:
192
+ """
193
+ Process input data to extract semiotic meaning and generate new signs.
194
+
195
+ Args:
196
+ input_data: Dictionary containing sign and context information
197
+
198
+ Returns:
199
+ SemioticState representing the processed state
200
+ """
201
+ # Build semiotic network
202
  network = self.network_builder.construct(input_data)
203
+
204
+ # Interpret the network
205
  interpretation = self.interpreter.interpret(network)
206
 
207
+ # Generate new signs if needed
208
  if self._requires_generation(interpretation):
209
  generated_signs = self.generator.create_signs(interpretation)
210
  return self._integrate_semiotic_state(interpretation, generated_signs)
211
 
212
+ return self._create_semiotic_state(interpretation)
213
+
214
+ def _requires_generation(self, interpretation: Dict[str, Any]) -> bool:
215
+ """
216
+ Determine if new sign generation is required based on interpretation.
217
+
218
+ Args:
219
+ interpretation: The current interpretation state
220
+
221
+ Returns:
222
+ Boolean indicating if generation is needed
223
+ """
224
+ patterns = interpretation.get("patterns", {})
225
+ return patterns.get("coherence", 0) < 0.5 or len(interpretation.get("meanings", {})) < 3
226
+
227
+ def _integrate_semiotic_state(self, interpretation: Dict[str, Any], generated_signs: Dict[str, Any]) -> SemioticState:
228
+ """
229
+ Integrate interpretation and generated signs into a semiotic state.
230
+ """
231
+ meaning_vector = np.random.rand(128) # Placeholder for actual meaning vector
232
+ sign_vector = np.random.rand(128) # Placeholder for actual sign vector
233
+
234
+ return SemioticState(
235
+ sign_level=SignLevel.SEMANTIC,
236
+ meaning_vector=meaning_vector,
237
+ context_relations=interpretation.get("patterns", {}),
238
+ interpretation_confidence=generated_signs.get("confidence", 0.5),
239
+ sign_vector=sign_vector,
240
+ context_embedding=np.random.rand(128),
241
+ semantic_relations=interpretation.get("contextual_insights", {})
242
+ )
243
+
244
+ def _create_semiotic_state(self, interpretation: Dict[str, Any]) -> SemioticState:
245
+ """Create a semiotic state from interpretation without generation."""
246
+ return self._integrate_semiotic_state(interpretation, {"confidence": 0.8})