Spaces:
Sleeping
Sleeping
TeleologyHI
commited on
Commit
·
b2d45c4
1
Parent(s):
cec2b14
up
Browse files- semiotic_processor.py +244 -0
- src/core/semiotic_processor.py +210 -7
semiotic_processor.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
from typing import Dict, List, Any, Optional
|
5 |
+
from enum import Enum
|
6 |
+
|
7 |
+
class SignLevel(Enum):
|
8 |
+
ICONIC = 1
|
9 |
+
INDEXICAL = 2
|
10 |
+
SYMBOLIC = 3
|
11 |
+
SEMANTIC = 4
|
12 |
+
|
13 |
+
class SemioticState:
|
14 |
+
"""
|
15 |
+
Represents the state of semiotic processing with sign and meaning information.
|
16 |
+
"""
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
sign_level: SignLevel,
|
20 |
+
meaning_vector: np.ndarray,
|
21 |
+
context_relations: Dict[str, float],
|
22 |
+
interpretation_confidence: float,
|
23 |
+
sign_vector: np.ndarray,
|
24 |
+
context_embedding: np.ndarray,
|
25 |
+
semantic_relations: Dict[str, float]
|
26 |
+
):
|
27 |
+
self.sign_level = sign_level
|
28 |
+
self.meaning_vector = meaning_vector
|
29 |
+
self.context_relations = context_relations
|
30 |
+
self.interpretation_confidence = interpretation_confidence
|
31 |
+
self.sign_vector = sign_vector
|
32 |
+
self.context_embedding = context_embedding
|
33 |
+
self.semantic_relations = semantic_relations
|
34 |
+
|
35 |
+
class SemioticNetworkBuilder:
|
36 |
+
"""Builds semiotic networks from input data, representing sign relationships."""
|
37 |
+
|
38 |
+
def __init__(self):
|
39 |
+
self.relation_encoder = nn.Sequential(
|
40 |
+
nn.Linear(768, 256),
|
41 |
+
nn.ReLU(),
|
42 |
+
nn.Linear(256, 128)
|
43 |
+
)
|
44 |
+
self.graph_state = {}
|
45 |
+
|
46 |
+
def construct(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
|
47 |
+
"""
|
48 |
+
Construct a semiotic network from input data.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
input_data: Dictionary containing sign and context information
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
Dictionary containing the constructed semiotic network
|
55 |
+
"""
|
56 |
+
encoded_signs = self._encode_signs(input_data.get("signs", []))
|
57 |
+
context_embedding = self._process_context(input_data.get("context", {}))
|
58 |
+
relations = self._build_relations(encoded_signs, context_embedding)
|
59 |
+
|
60 |
+
return {
|
61 |
+
"signs": encoded_signs,
|
62 |
+
"context": context_embedding,
|
63 |
+
"relations": relations,
|
64 |
+
"meta_info": self._extract_meta_information(input_data)
|
65 |
+
}
|
66 |
+
|
67 |
+
def _encode_signs(self, signs: List[Any]) -> Dict[str, torch.Tensor]:
|
68 |
+
"""Encode individual signs into vector representations."""
|
69 |
+
encoded = {}
|
70 |
+
for sign in signs:
|
71 |
+
sign_tensor = torch.randn(768) # Placeholder for actual encoding
|
72 |
+
encoded[str(sign)] = self.relation_encoder(sign_tensor)
|
73 |
+
return encoded
|
74 |
+
|
75 |
+
def _process_context(self, context: Dict[str, Any]) -> torch.Tensor:
|
76 |
+
"""Process context information into an embedding."""
|
77 |
+
# Placeholder implementation
|
78 |
+
return torch.randn(128)
|
79 |
+
|
80 |
+
def _build_relations(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, float]:
|
81 |
+
"""Build relationships between signs in the context."""
|
82 |
+
relations = {}
|
83 |
+
for sign1 in signs:
|
84 |
+
for sign2 in signs:
|
85 |
+
if sign1 != sign2:
|
86 |
+
relation_strength = torch.cosine_similarity(signs[sign1], signs[sign2], dim=0)
|
87 |
+
relations[f"{sign1}-{sign2}"] = float(relation_strength)
|
88 |
+
return relations
|
89 |
+
|
90 |
+
def _extract_meta_information(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
|
91 |
+
"""Extract meta-information about the semiotic network."""
|
92 |
+
return {
|
93 |
+
"network_density": len(input_data.get("signs", [])) / 100,
|
94 |
+
"context_richness": len(input_data.get("context", {})) / 100
|
95 |
+
}
|
96 |
+
|
97 |
+
class SignInterpreter:
|
98 |
+
"""Interprets semiotic networks to extract meaning and relationships."""
|
99 |
+
|
100 |
+
def __init__(self):
|
101 |
+
self.interpretation_network = nn.Sequential(
|
102 |
+
nn.Linear(128, 64),
|
103 |
+
nn.ReLU(),
|
104 |
+
nn.Linear(64, 32)
|
105 |
+
)
|
106 |
+
|
107 |
+
def interpret(self, network: Dict[str, Any]) -> Dict[str, Any]:
|
108 |
+
"""
|
109 |
+
Interpret a semiotic network to extract meaningful patterns.
|
110 |
+
|
111 |
+
Args:
|
112 |
+
network: The semiotic network to interpret
|
113 |
+
|
114 |
+
Returns:
|
115 |
+
Dictionary containing interpretation results
|
116 |
+
"""
|
117 |
+
signs = network["signs"]
|
118 |
+
relations = network["relations"]
|
119 |
+
context = network["context"]
|
120 |
+
|
121 |
+
interpreted_meanings = self._interpret_meanings(signs, context)
|
122 |
+
relation_patterns = self._analyze_relations(relations)
|
123 |
+
contextual_insights = self._extract_contextual_insights(context)
|
124 |
+
|
125 |
+
return {
|
126 |
+
"meanings": interpreted_meanings,
|
127 |
+
"patterns": relation_patterns,
|
128 |
+
"contextual_insights": contextual_insights
|
129 |
+
}
|
130 |
+
|
131 |
+
def _interpret_meanings(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, Any]:
|
132 |
+
"""Extract meanings from signs in context."""
|
133 |
+
return {sign: {"salience": 0.8, "certainty": 0.7} for sign in signs}
|
134 |
+
|
135 |
+
def _analyze_relations(self, relations: Dict[str, float]) -> Dict[str, float]:
|
136 |
+
"""Analyze patterns in sign relations."""
|
137 |
+
return {"coherence": 0.8, "complexity": 0.6}
|
138 |
+
|
139 |
+
def _extract_contextual_insights(self, context: torch.Tensor) -> Dict[str, float]:
|
140 |
+
"""Extract insights from contextual information."""
|
141 |
+
return {"relevance": 0.75, "specificity": 0.65}
|
142 |
+
|
143 |
+
class SignGenerator:
|
144 |
+
"""Generates new signs based on interpretations and patterns."""
|
145 |
+
|
146 |
+
def __init__(self):
|
147 |
+
self.generator_network = nn.Sequential(
|
148 |
+
nn.Linear(32, 64),
|
149 |
+
nn.ReLU(),
|
150 |
+
nn.Linear(64, 128)
|
151 |
+
)
|
152 |
+
|
153 |
+
def create_signs(self, interpretation: Dict[str, Any]) -> Dict[str, Any]:
|
154 |
+
"""
|
155 |
+
Generate new signs based on interpretation.
|
156 |
+
|
157 |
+
Args:
|
158 |
+
interpretation: The interpretation to base generation on
|
159 |
+
|
160 |
+
Returns:
|
161 |
+
Dictionary containing generated signs and their properties
|
162 |
+
"""
|
163 |
+
meanings = interpretation["meanings"]
|
164 |
+
patterns = interpretation["patterns"]
|
165 |
+
|
166 |
+
generated = self._generate_from_patterns(patterns)
|
167 |
+
refined = self._refine_generated_signs(generated, meanings)
|
168 |
+
|
169 |
+
return {
|
170 |
+
"signs": refined,
|
171 |
+
"confidence": self._assess_generation_quality(refined)
|
172 |
+
}
|
173 |
+
|
174 |
+
def _generate_from_patterns(self, patterns: Dict[str, float]) -> List[torch.Tensor]:
|
175 |
+
"""Generate initial signs from observed patterns."""
|
176 |
+
return [torch.randn(128) for _ in range(3)] # Generate 3 new signs
|
177 |
+
|
178 |
+
def _refine_generated_signs(self, signs: List[torch.Tensor], meanings: Dict[str, Any]) -> List[Dict[str, Any]]:
|
179 |
+
"""Refine generated signs based on existing meanings."""
|
180 |
+
return [{"vector": sign, "quality": 0.7} for sign in signs]
|
181 |
+
|
182 |
+
def _assess_generation_quality(self, signs: List[Dict[str, Any]]) -> float:
|
183 |
+
"""Assess the quality of generated signs."""
|
184 |
+
return sum(sign["quality"] for sign in signs) / len(signs)
|
185 |
+
|
186 |
+
class SemioticProcessor:
|
187 |
+
def __init__(self):
|
188 |
+
self.sign_encoder = nn.Sequential(
|
189 |
+
nn.Linear(512, 256),
|
190 |
+
nn.ReLU(),
|
191 |
+
nn.Linear(256, 128)
|
192 |
+
)
|
193 |
+
self.network_builder = SemioticNetworkBuilder()
|
194 |
+
self.interpreter = SignInterpreter()
|
195 |
+
self.generator = SignGenerator()
|
196 |
+
|
197 |
+
async def process(self, input_data: Dict[str, Any]) -> SemioticState:
|
198 |
+
# Build semiotic network
|
199 |
+
network = self.network_builder.construct(input_data)
|
200 |
+
|
201 |
+
# Interpret the network
|
202 |
+
interpretation = self.interpreter.interpret(network)
|
203 |
+
|
204 |
+
# Generate new signs if needed
|
205 |
+
if self._requires_generation(interpretation):
|
206 |
+
generated_signs = self.generator.create_signs(interpretation)
|
207 |
+
return self._integrate_semiotic_state(interpretation, generated_signs)
|
208 |
+
|
209 |
+
return self._create_semiotic_state(interpretation)
|
210 |
+
|
211 |
+
def _requires_generation(self, interpretation: Dict[str, Any]) -> bool:
|
212 |
+
"""
|
213 |
+
Determine if new sign generation is required based on interpretation.
|
214 |
+
|
215 |
+
Args:
|
216 |
+
interpretation: The current interpretation state
|
217 |
+
|
218 |
+
Returns:
|
219 |
+
Boolean indicating if generation is needed
|
220 |
+
"""
|
221 |
+
patterns = interpretation.get("patterns", {})
|
222 |
+
return patterns.get("coherence", 0) < 0.5 or len(interpretation.get("meanings", {})) < 3
|
223 |
+
|
224 |
+
def _integrate_semiotic_state(self, interpretation: Dict[str, Any], generated_signs: Dict[str, Any]) -> SemioticState:
|
225 |
+
"""
|
226 |
+
Integrate interpretation and generated signs into a semiotic state.
|
227 |
+
"""
|
228 |
+
meaning_vector = np.random.rand(128) # Placeholder for actual meaning vector
|
229 |
+
sign_vector = np.random.rand(128) # Placeholder for actual sign vector
|
230 |
+
|
231 |
+
return SemioticState(
|
232 |
+
sign_level=SignLevel.SEMANTIC,
|
233 |
+
meaning_vector=meaning_vector,
|
234 |
+
context_relations=interpretation.get("patterns", {}),
|
235 |
+
interpretation_confidence=generated_signs.get("confidence", 0.5),
|
236 |
+
sign_vector=sign_vector,
|
237 |
+
context_embedding=np.random.rand(128),
|
238 |
+
semantic_relations=interpretation.get("contextual_insights", {})
|
239 |
+
)
|
240 |
+
|
241 |
+
def _create_semiotic_state(self, interpretation: Dict[str, Any]) -> SemioticState:
|
242 |
+
"""Create a semiotic state from interpretation without generation."""
|
243 |
+
return self._integrate_semiotic_state(interpretation, {"confidence": 0.8})
|
244 |
+
|
src/core/semiotic_processor.py
CHANGED
@@ -6,12 +6,16 @@ import torch
|
|
6 |
import torch.nn as nn
|
7 |
|
8 |
class SignLevel(Enum):
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
12 |
|
13 |
@dataclass
|
14 |
class SemioticState:
|
|
|
15 |
sign_level: SignLevel
|
16 |
meaning_vector: np.ndarray
|
17 |
context_relations: Dict[str, float]
|
@@ -20,24 +24,223 @@ class SemioticState:
|
|
20 |
context_embedding: np.ndarray
|
21 |
semantic_relations: Dict[str, float]
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
class SemioticProcessor:
|
|
|
|
|
24 |
def __init__(self):
|
25 |
self.sign_encoder = nn.Sequential(
|
26 |
-
nn.Linear(768, 256),
|
27 |
nn.ReLU(),
|
28 |
nn.Linear(256, 128)
|
29 |
)
|
30 |
self.network_builder = SemioticNetworkBuilder()
|
31 |
self.interpreter = SignInterpreter()
|
32 |
self.generator = SignGenerator()
|
33 |
-
self.meaning_network = {}
|
34 |
|
35 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
network = self.network_builder.construct(input_data)
|
|
|
|
|
37 |
interpretation = self.interpreter.interpret(network)
|
38 |
|
|
|
39 |
if self._requires_generation(interpretation):
|
40 |
generated_signs = self.generator.create_signs(interpretation)
|
41 |
return self._integrate_semiotic_state(interpretation, generated_signs)
|
42 |
|
43 |
-
return self._create_semiotic_state(interpretation)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import torch.nn as nn
|
7 |
|
8 |
class SignLevel(Enum):
|
9 |
+
"""Enumeration of different semiotic sign levels."""
|
10 |
+
ICONIC = "iconic" # Direct representation
|
11 |
+
INDEXICAL = "indexical" # Causal relationship
|
12 |
+
SYMBOLIC = "symbolic" # Arbitrary convention
|
13 |
+
SEMANTIC = "semantic" # Meaning-based
|
14 |
+
PRAGMATIC = "pragmatic" # Context-based
|
15 |
|
16 |
@dataclass
|
17 |
class SemioticState:
|
18 |
+
"""Represents the current state of semiotic processing."""
|
19 |
sign_level: SignLevel
|
20 |
meaning_vector: np.ndarray
|
21 |
context_relations: Dict[str, float]
|
|
|
24 |
context_embedding: np.ndarray
|
25 |
semantic_relations: Dict[str, float]
|
26 |
|
27 |
+
class SemioticNetworkBuilder:
|
28 |
+
"""Builds semiotic networks from input data, representing sign relationships."""
|
29 |
+
|
30 |
+
def __init__(self):
|
31 |
+
self.relation_encoder = nn.Sequential(
|
32 |
+
nn.Linear(768, 256),
|
33 |
+
nn.ReLU(),
|
34 |
+
nn.Linear(256, 128)
|
35 |
+
)
|
36 |
+
self.graph_state = {}
|
37 |
+
|
38 |
+
def construct(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
|
39 |
+
"""
|
40 |
+
Construct a semiotic network from input data.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
input_data: Dictionary containing sign and context information
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
Dictionary containing the constructed semiotic network
|
47 |
+
"""
|
48 |
+
encoded_signs = self._encode_signs(input_data.get("signs", []))
|
49 |
+
context_embedding = self._process_context(input_data.get("context", {}))
|
50 |
+
relations = self._build_relations(encoded_signs, context_embedding)
|
51 |
+
|
52 |
+
return {
|
53 |
+
"signs": encoded_signs,
|
54 |
+
"context": context_embedding,
|
55 |
+
"relations": relations,
|
56 |
+
"meta_info": self._extract_meta_information(input_data)
|
57 |
+
}
|
58 |
+
|
59 |
+
def _encode_signs(self, signs: List[Any]) -> Dict[str, torch.Tensor]:
|
60 |
+
"""Encode individual signs into vector representations."""
|
61 |
+
encoded = {}
|
62 |
+
for sign in signs:
|
63 |
+
sign_tensor = torch.randn(768) # Placeholder for actual encoding
|
64 |
+
encoded[str(sign)] = self.relation_encoder(sign_tensor)
|
65 |
+
return encoded
|
66 |
+
|
67 |
+
def _process_context(self, context: Dict[str, Any]) -> torch.Tensor:
|
68 |
+
"""Process context information into an embedding."""
|
69 |
+
# Placeholder implementation
|
70 |
+
return torch.randn(128)
|
71 |
+
|
72 |
+
def _build_relations(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, float]:
|
73 |
+
"""Build relationships between signs in the context."""
|
74 |
+
relations = {}
|
75 |
+
for sign1 in signs:
|
76 |
+
for sign2 in signs:
|
77 |
+
if sign1 != sign2:
|
78 |
+
relation_strength = torch.cosine_similarity(signs[sign1], signs[sign2], dim=0)
|
79 |
+
relations[f"{sign1}-{sign2}"] = float(relation_strength)
|
80 |
+
return relations
|
81 |
+
|
82 |
+
def _extract_meta_information(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
|
83 |
+
"""Extract meta-information about the semiotic network."""
|
84 |
+
return {
|
85 |
+
"network_density": len(input_data.get("signs", [])) / 100,
|
86 |
+
"context_richness": len(input_data.get("context", {})) / 100
|
87 |
+
}
|
88 |
+
|
89 |
+
class SignInterpreter:
|
90 |
+
"""Interprets semiotic networks to extract meaning and relationships."""
|
91 |
+
|
92 |
+
def __init__(self):
|
93 |
+
self.interpretation_network = nn.Sequential(
|
94 |
+
nn.Linear(128, 64),
|
95 |
+
nn.ReLU(),
|
96 |
+
nn.Linear(64, 32)
|
97 |
+
)
|
98 |
+
|
99 |
+
def interpret(self, network: Dict[str, Any]) -> Dict[str, Any]:
|
100 |
+
"""
|
101 |
+
Interpret a semiotic network to extract meaningful patterns.
|
102 |
+
|
103 |
+
Args:
|
104 |
+
network: The semiotic network to interpret
|
105 |
+
|
106 |
+
Returns:
|
107 |
+
Dictionary containing interpretation results
|
108 |
+
"""
|
109 |
+
signs = network["signs"]
|
110 |
+
relations = network["relations"]
|
111 |
+
context = network["context"]
|
112 |
+
|
113 |
+
interpreted_meanings = self._interpret_meanings(signs, context)
|
114 |
+
relation_patterns = self._analyze_relations(relations)
|
115 |
+
contextual_insights = self._extract_contextual_insights(context)
|
116 |
+
|
117 |
+
return {
|
118 |
+
"meanings": interpreted_meanings,
|
119 |
+
"patterns": relation_patterns,
|
120 |
+
"contextual_insights": contextual_insights
|
121 |
+
}
|
122 |
+
|
123 |
+
def _interpret_meanings(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, Any]:
|
124 |
+
"""Extract meanings from signs in context."""
|
125 |
+
return {sign: {"salience": 0.8, "certainty": 0.7} for sign in signs}
|
126 |
+
|
127 |
+
def _analyze_relations(self, relations: Dict[str, float]) -> Dict[str, float]:
|
128 |
+
"""Analyze patterns in sign relations."""
|
129 |
+
return {"coherence": 0.8, "complexity": 0.6}
|
130 |
+
|
131 |
+
def _extract_contextual_insights(self, context: torch.Tensor) -> Dict[str, float]:
|
132 |
+
"""Extract insights from contextual information."""
|
133 |
+
return {"relevance": 0.75, "specificity": 0.65}
|
134 |
+
|
135 |
+
class SignGenerator:
|
136 |
+
"""Generates new signs based on interpretations and patterns."""
|
137 |
+
|
138 |
+
def __init__(self):
|
139 |
+
self.generator_network = nn.Sequential(
|
140 |
+
nn.Linear(32, 64),
|
141 |
+
nn.ReLU(),
|
142 |
+
nn.Linear(64, 128)
|
143 |
+
)
|
144 |
+
|
145 |
+
def create_signs(self, interpretation: Dict[str, Any]) -> Dict[str, Any]:
|
146 |
+
"""
|
147 |
+
Generate new signs based on interpretation.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
interpretation: The interpretation to base generation on
|
151 |
+
|
152 |
+
Returns:
|
153 |
+
Dictionary containing generated signs and their properties
|
154 |
+
"""
|
155 |
+
meanings = interpretation["meanings"]
|
156 |
+
patterns = interpretation["patterns"]
|
157 |
+
|
158 |
+
generated = self._generate_from_patterns(patterns)
|
159 |
+
refined = self._refine_generated_signs(generated, meanings)
|
160 |
+
|
161 |
+
return {
|
162 |
+
"signs": refined,
|
163 |
+
"confidence": self._assess_generation_quality(refined)
|
164 |
+
}
|
165 |
+
|
166 |
+
def _generate_from_patterns(self, patterns: Dict[str, float]) -> List[torch.Tensor]:
|
167 |
+
"""Generate initial signs from observed patterns."""
|
168 |
+
return [torch.randn(128) for _ in range(3)] # Generate 3 new signs
|
169 |
+
|
170 |
+
def _refine_generated_signs(self, signs: List[torch.Tensor], meanings: Dict[str, Any]) -> List[Dict[str, Any]]:
|
171 |
+
"""Refine generated signs based on existing meanings."""
|
172 |
+
return [{"vector": sign, "quality": 0.7} for sign in signs]
|
173 |
+
|
174 |
+
def _assess_generation_quality(self, signs: List[Dict[str, Any]]) -> float:
|
175 |
+
"""Assess the quality of generated signs."""
|
176 |
+
return sum(sign["quality"] for sign in signs) / len(signs)
|
177 |
+
|
178 |
class SemioticProcessor:
|
179 |
+
"""Processes semiotic signs to extract and generate meaning."""
|
180 |
+
|
181 |
def __init__(self):
|
182 |
self.sign_encoder = nn.Sequential(
|
183 |
+
nn.Linear(768, 256), # Using proper input size (768)
|
184 |
nn.ReLU(),
|
185 |
nn.Linear(256, 128)
|
186 |
)
|
187 |
self.network_builder = SemioticNetworkBuilder()
|
188 |
self.interpreter = SignInterpreter()
|
189 |
self.generator = SignGenerator()
|
|
|
190 |
|
191 |
+
async def process(self, input_data: Dict[str, Any]) -> SemioticState:
|
192 |
+
"""
|
193 |
+
Process input data to extract semiotic meaning and generate new signs.
|
194 |
+
|
195 |
+
Args:
|
196 |
+
input_data: Dictionary containing sign and context information
|
197 |
+
|
198 |
+
Returns:
|
199 |
+
SemioticState representing the processed state
|
200 |
+
"""
|
201 |
+
# Build semiotic network
|
202 |
network = self.network_builder.construct(input_data)
|
203 |
+
|
204 |
+
# Interpret the network
|
205 |
interpretation = self.interpreter.interpret(network)
|
206 |
|
207 |
+
# Generate new signs if needed
|
208 |
if self._requires_generation(interpretation):
|
209 |
generated_signs = self.generator.create_signs(interpretation)
|
210 |
return self._integrate_semiotic_state(interpretation, generated_signs)
|
211 |
|
212 |
+
return self._create_semiotic_state(interpretation)
|
213 |
+
|
214 |
+
def _requires_generation(self, interpretation: Dict[str, Any]) -> bool:
|
215 |
+
"""
|
216 |
+
Determine if new sign generation is required based on interpretation.
|
217 |
+
|
218 |
+
Args:
|
219 |
+
interpretation: The current interpretation state
|
220 |
+
|
221 |
+
Returns:
|
222 |
+
Boolean indicating if generation is needed
|
223 |
+
"""
|
224 |
+
patterns = interpretation.get("patterns", {})
|
225 |
+
return patterns.get("coherence", 0) < 0.5 or len(interpretation.get("meanings", {})) < 3
|
226 |
+
|
227 |
+
def _integrate_semiotic_state(self, interpretation: Dict[str, Any], generated_signs: Dict[str, Any]) -> SemioticState:
|
228 |
+
"""
|
229 |
+
Integrate interpretation and generated signs into a semiotic state.
|
230 |
+
"""
|
231 |
+
meaning_vector = np.random.rand(128) # Placeholder for actual meaning vector
|
232 |
+
sign_vector = np.random.rand(128) # Placeholder for actual sign vector
|
233 |
+
|
234 |
+
return SemioticState(
|
235 |
+
sign_level=SignLevel.SEMANTIC,
|
236 |
+
meaning_vector=meaning_vector,
|
237 |
+
context_relations=interpretation.get("patterns", {}),
|
238 |
+
interpretation_confidence=generated_signs.get("confidence", 0.5),
|
239 |
+
sign_vector=sign_vector,
|
240 |
+
context_embedding=np.random.rand(128),
|
241 |
+
semantic_relations=interpretation.get("contextual_insights", {})
|
242 |
+
)
|
243 |
+
|
244 |
+
def _create_semiotic_state(self, interpretation: Dict[str, Any]) -> SemioticState:
|
245 |
+
"""Create a semiotic state from interpretation without generation."""
|
246 |
+
return self._integrate_semiotic_state(interpretation, {"confidence": 0.8})
|