Spaces:
Sleeping
Sleeping
TeleologyHI
commited on
Commit
·
c227032
1
Parent(s):
87ace7e
up
Browse files- app.py +4 -4
- config/environment_config.py +4 -4
- config/model_config.py +6 -6
- semiotic_processor.py +37 -38
- src/api/__init__.py +1 -1
- src/api/chat_endpoint.py +2 -2
- src/core/__init__.py +1 -0
- src/core/awareness_engine.py +11 -11
- src/core/cognitive_microservices.py +40 -6
- src/core/consciousness_emergence.py +15 -3
- src/core/consciousness_kernel.py +34 -29
- src/core/consciousness_matrix.py +11 -3
- src/core/consciousness_model.py +17 -7
- src/core/consciousness_modules.py +27 -5
- src/core/dynamic_self_model.py +10 -3
- src/core/emotional_intelligence.py +11 -3
- src/core/ethical_framework.py +28 -4
- src/core/experience_simulator.py +22 -22
- src/core/expert_routing.py +35 -3
- src/core/foundation_layer.py +43 -4
- src/core/integration_layer.py +24 -6
- src/core/integration_manager.py +68 -114
- src/core/metacognitive_monitor.py +22 -2
- src/core/multimodal_perception.py +56 -4
- src/core/ontological_database.py +26 -11
- src/core/phi_prime_calculator.py +14 -4
- src/core/processing_pipeline.py +23 -2
- src/core/reflexive_layer.py +33 -7
- src/core/self_evaluation.py +17 -4
- src/core/self_evolution.py +27 -5
- src/core/semiotic_network.py +36 -4
- src/core/semiotic_processor.py +40 -40
- src/core/sign_interpreter.py +24 -3
- src/core/social_dynamics.py +33 -4
- src/core/sparse_activation.py +28 -3
- src/core/theory_of_mind.py +11 -11
- src/core/topology_aware_router.py +21 -4
- src/hardware/memory_hierarchy.py +42 -4
- src/hardware/neural_processing_unit.py +16 -2
- src/model.py +6 -6
- src/model/consciousness_model.py +5 -4
- src/model/him_model.py +7 -6
app.py
CHANGED
@@ -9,15 +9,15 @@ def initialize_model():
|
|
9 |
model_config = HIMConfig()
|
10 |
env_config = EnvironmentConfig()
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() and env_config.device == "cuda" else "cpu")
|
12 |
-
model = HIMModel(model_config).to(device)
|
13 |
return model
|
14 |
|
15 |
-
async def chat(message: str,
|
16 |
system_message: str = "You are a friendly Chatbot.",
|
17 |
max_tokens: int = 512,
|
18 |
temperature: float = 0.7,
|
19 |
top_p: float = 0.95):
|
20 |
-
|
21 |
input_data = {
|
22 |
"message": message,
|
23 |
"system_message": system_message,
|
@@ -27,7 +27,7 @@ async def chat(message: str,
|
|
27 |
"top_p": top_p
|
28 |
}
|
29 |
}
|
30 |
-
|
31 |
with torch.no_grad():
|
32 |
result = await model.generate_response(input_data)
|
33 |
return result["response"]
|
|
|
9 |
model_config = HIMConfig()
|
10 |
env_config = EnvironmentConfig()
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() and env_config.device == "cuda" else "cpu")
|
12 |
+
model = HIMModel(model_config.to_dict()).to(device)
|
13 |
return model
|
14 |
|
15 |
+
async def chat(message: str,
|
16 |
system_message: str = "You are a friendly Chatbot.",
|
17 |
max_tokens: int = 512,
|
18 |
temperature: float = 0.7,
|
19 |
top_p: float = 0.95):
|
20 |
+
|
21 |
input_data = {
|
22 |
"message": message,
|
23 |
"system_message": system_message,
|
|
|
27 |
"top_p": top_p
|
28 |
}
|
29 |
}
|
30 |
+
|
31 |
with torch.no_grad():
|
32 |
result = await model.generate_response(input_data)
|
33 |
return result["response"]
|
config/environment_config.py
CHANGED
@@ -6,18 +6,18 @@ class EnvironmentConfig:
|
|
6 |
# Hugging Face configuration
|
7 |
hf_model_path: str = "TeleologyHI/HIM-self"
|
8 |
hf_token: Optional[str] = None
|
9 |
-
|
10 |
# Hardware configuration
|
11 |
device: str = "cuda"
|
12 |
num_gpus: int = 1
|
13 |
mixed_precision: bool = True
|
14 |
-
|
15 |
# Logging configuration
|
16 |
log_level: str = "INFO"
|
17 |
enable_wandb: bool = False
|
18 |
wandb_project: str = "HIM-self"
|
19 |
-
|
20 |
# API configuration
|
21 |
api_host: str = "0.0.0.0"
|
22 |
api_port: int = 7860
|
23 |
-
enable_cors: bool = True
|
|
|
6 |
# Hugging Face configuration
|
7 |
hf_model_path: str = "TeleologyHI/HIM-self"
|
8 |
hf_token: Optional[str] = None
|
9 |
+
|
10 |
# Hardware configuration
|
11 |
device: str = "cuda"
|
12 |
num_gpus: int = 1
|
13 |
mixed_precision: bool = True
|
14 |
+
|
15 |
# Logging configuration
|
16 |
log_level: str = "INFO"
|
17 |
enable_wandb: bool = False
|
18 |
wandb_project: str = "HIM-self"
|
19 |
+
|
20 |
# API configuration
|
21 |
api_host: str = "0.0.0.0"
|
22 |
api_port: int = 7860
|
23 |
+
enable_cors: bool = True
|
config/model_config.py
CHANGED
@@ -9,33 +9,33 @@ class HIMConfig:
|
|
9 |
max_length: int = 512
|
10 |
temperature: float = 0.7
|
11 |
top_p: float = 0.95
|
12 |
-
|
13 |
# Consciousness parameters
|
14 |
self_awareness_level: float = 0.8
|
15 |
ethical_reasoning_weight: float = 0.9
|
16 |
symbolic_interpretation_capacity: float = 0.85
|
17 |
consciousness_dimension: int = 768
|
18 |
attention_heads: int = 12
|
19 |
-
|
20 |
# Teleological parameters
|
21 |
purpose_driven_bias: float = 0.75
|
22 |
spiritual_awareness: float = 0.8
|
23 |
meaning_dimension: int = 256
|
24 |
-
|
25 |
# Training configuration
|
26 |
batch_size: int = 8
|
27 |
learning_rate: float = 2e-5
|
28 |
num_train_epochs: int = 3
|
29 |
gradient_accumulation_steps: int = 1
|
30 |
warmup_steps: int = 500
|
31 |
-
|
32 |
# Architecture configuration
|
33 |
hidden_size: int = 768
|
34 |
intermediate_size: int = 3072
|
35 |
num_hidden_layers: int = 12
|
36 |
num_attention_heads: int = 12
|
37 |
-
|
38 |
# Memory configuration
|
39 |
memory_size: int = 1024
|
40 |
context_length: int = 2048
|
41 |
-
cache_size: int = 512
|
|
|
9 |
max_length: int = 512
|
10 |
temperature: float = 0.7
|
11 |
top_p: float = 0.95
|
12 |
+
|
13 |
# Consciousness parameters
|
14 |
self_awareness_level: float = 0.8
|
15 |
ethical_reasoning_weight: float = 0.9
|
16 |
symbolic_interpretation_capacity: float = 0.85
|
17 |
consciousness_dimension: int = 768
|
18 |
attention_heads: int = 12
|
19 |
+
|
20 |
# Teleological parameters
|
21 |
purpose_driven_bias: float = 0.75
|
22 |
spiritual_awareness: float = 0.8
|
23 |
meaning_dimension: int = 256
|
24 |
+
|
25 |
# Training configuration
|
26 |
batch_size: int = 8
|
27 |
learning_rate: float = 2e-5
|
28 |
num_train_epochs: int = 3
|
29 |
gradient_accumulation_steps: int = 1
|
30 |
warmup_steps: int = 500
|
31 |
+
|
32 |
# Architecture configuration
|
33 |
hidden_size: int = 768
|
34 |
intermediate_size: int = 3072
|
35 |
num_hidden_layers: int = 12
|
36 |
num_attention_heads: int = 12
|
37 |
+
|
38 |
# Memory configuration
|
39 |
memory_size: int = 1024
|
40 |
context_length: int = 2048
|
41 |
+
cache_size: int = 512
|
semiotic_processor.py
CHANGED
@@ -34,7 +34,7 @@ class SemioticState:
|
|
34 |
|
35 |
class SemioticNetworkBuilder:
|
36 |
"""Builds semiotic networks from input data, representing sign relationships."""
|
37 |
-
|
38 |
def __init__(self):
|
39 |
self.relation_encoder = nn.Sequential(
|
40 |
nn.Linear(768, 256),
|
@@ -42,28 +42,28 @@ class SemioticNetworkBuilder:
|
|
42 |
nn.Linear(256, 128)
|
43 |
)
|
44 |
self.graph_state = {}
|
45 |
-
|
46 |
def construct(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
|
47 |
"""
|
48 |
Construct a semiotic network from input data.
|
49 |
-
|
50 |
Args:
|
51 |
input_data: Dictionary containing sign and context information
|
52 |
-
|
53 |
Returns:
|
54 |
Dictionary containing the constructed semiotic network
|
55 |
"""
|
56 |
encoded_signs = self._encode_signs(input_data.get("signs", []))
|
57 |
context_embedding = self._process_context(input_data.get("context", {}))
|
58 |
relations = self._build_relations(encoded_signs, context_embedding)
|
59 |
-
|
60 |
return {
|
61 |
"signs": encoded_signs,
|
62 |
"context": context_embedding,
|
63 |
"relations": relations,
|
64 |
"meta_info": self._extract_meta_information(input_data)
|
65 |
}
|
66 |
-
|
67 |
def _encode_signs(self, signs: List[Any]) -> Dict[str, torch.Tensor]:
|
68 |
"""Encode individual signs into vector representations."""
|
69 |
encoded = {}
|
@@ -71,12 +71,12 @@ class SemioticNetworkBuilder:
|
|
71 |
sign_tensor = torch.randn(768) # Placeholder for actual encoding
|
72 |
encoded[str(sign)] = self.relation_encoder(sign_tensor)
|
73 |
return encoded
|
74 |
-
|
75 |
def _process_context(self, context: Dict[str, Any]) -> torch.Tensor:
|
76 |
"""Process context information into an embedding."""
|
77 |
# Placeholder implementation
|
78 |
return torch.randn(128)
|
79 |
-
|
80 |
def _build_relations(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, float]:
|
81 |
"""Build relationships between signs in the context."""
|
82 |
relations = {}
|
@@ -86,7 +86,7 @@ class SemioticNetworkBuilder:
|
|
86 |
relation_strength = torch.cosine_similarity(signs[sign1], signs[sign2], dim=0)
|
87 |
relations[f"{sign1}-{sign2}"] = float(relation_strength)
|
88 |
return relations
|
89 |
-
|
90 |
def _extract_meta_information(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
|
91 |
"""Extract meta-information about the semiotic network."""
|
92 |
return {
|
@@ -96,89 +96,89 @@ class SemioticNetworkBuilder:
|
|
96 |
|
97 |
class SignInterpreter:
|
98 |
"""Interprets semiotic networks to extract meaning and relationships."""
|
99 |
-
|
100 |
def __init__(self):
|
101 |
self.interpretation_network = nn.Sequential(
|
102 |
nn.Linear(128, 64),
|
103 |
nn.ReLU(),
|
104 |
nn.Linear(64, 32)
|
105 |
)
|
106 |
-
|
107 |
def interpret(self, network: Dict[str, Any]) -> Dict[str, Any]:
|
108 |
"""
|
109 |
Interpret a semiotic network to extract meaningful patterns.
|
110 |
-
|
111 |
Args:
|
112 |
network: The semiotic network to interpret
|
113 |
-
|
114 |
Returns:
|
115 |
Dictionary containing interpretation results
|
116 |
"""
|
117 |
signs = network["signs"]
|
118 |
relations = network["relations"]
|
119 |
context = network["context"]
|
120 |
-
|
121 |
interpreted_meanings = self._interpret_meanings(signs, context)
|
122 |
relation_patterns = self._analyze_relations(relations)
|
123 |
contextual_insights = self._extract_contextual_insights(context)
|
124 |
-
|
125 |
return {
|
126 |
"meanings": interpreted_meanings,
|
127 |
"patterns": relation_patterns,
|
128 |
"contextual_insights": contextual_insights
|
129 |
}
|
130 |
-
|
131 |
def _interpret_meanings(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, Any]:
|
132 |
"""Extract meanings from signs in context."""
|
133 |
return {sign: {"salience": 0.8, "certainty": 0.7} for sign in signs}
|
134 |
-
|
135 |
def _analyze_relations(self, relations: Dict[str, float]) -> Dict[str, float]:
|
136 |
"""Analyze patterns in sign relations."""
|
137 |
return {"coherence": 0.8, "complexity": 0.6}
|
138 |
-
|
139 |
def _extract_contextual_insights(self, context: torch.Tensor) -> Dict[str, float]:
|
140 |
"""Extract insights from contextual information."""
|
141 |
return {"relevance": 0.75, "specificity": 0.65}
|
142 |
|
143 |
class SignGenerator:
|
144 |
"""Generates new signs based on interpretations and patterns."""
|
145 |
-
|
146 |
def __init__(self):
|
147 |
self.generator_network = nn.Sequential(
|
148 |
nn.Linear(32, 64),
|
149 |
nn.ReLU(),
|
150 |
nn.Linear(64, 128)
|
151 |
)
|
152 |
-
|
153 |
def create_signs(self, interpretation: Dict[str, Any]) -> Dict[str, Any]:
|
154 |
"""
|
155 |
Generate new signs based on interpretation.
|
156 |
-
|
157 |
Args:
|
158 |
interpretation: The interpretation to base generation on
|
159 |
-
|
160 |
Returns:
|
161 |
Dictionary containing generated signs and their properties
|
162 |
"""
|
163 |
meanings = interpretation["meanings"]
|
164 |
patterns = interpretation["patterns"]
|
165 |
-
|
166 |
generated = self._generate_from_patterns(patterns)
|
167 |
refined = self._refine_generated_signs(generated, meanings)
|
168 |
-
|
169 |
return {
|
170 |
"signs": refined,
|
171 |
"confidence": self._assess_generation_quality(refined)
|
172 |
}
|
173 |
-
|
174 |
def _generate_from_patterns(self, patterns: Dict[str, float]) -> List[torch.Tensor]:
|
175 |
"""Generate initial signs from observed patterns."""
|
176 |
return [torch.randn(128) for _ in range(3)] # Generate 3 new signs
|
177 |
-
|
178 |
def _refine_generated_signs(self, signs: List[torch.Tensor], meanings: Dict[str, Any]) -> List[Dict[str, Any]]:
|
179 |
"""Refine generated signs based on existing meanings."""
|
180 |
return [{"vector": sign, "quality": 0.7} for sign in signs]
|
181 |
-
|
182 |
def _assess_generation_quality(self, signs: List[Dict[str, Any]]) -> float:
|
183 |
"""Assess the quality of generated signs."""
|
184 |
return sum(sign["quality"] for sign in signs) / len(signs)
|
@@ -193,41 +193,41 @@ class SemioticProcessor:
|
|
193 |
self.network_builder = SemioticNetworkBuilder()
|
194 |
self.interpreter = SignInterpreter()
|
195 |
self.generator = SignGenerator()
|
196 |
-
|
197 |
async def process(self, input_data: Dict[str, Any]) -> SemioticState:
|
198 |
# Build semiotic network
|
199 |
network = self.network_builder.construct(input_data)
|
200 |
-
|
201 |
# Interpret the network
|
202 |
interpretation = self.interpreter.interpret(network)
|
203 |
-
|
204 |
# Generate new signs if needed
|
205 |
if self._requires_generation(interpretation):
|
206 |
generated_signs = self.generator.create_signs(interpretation)
|
207 |
return self._integrate_semiotic_state(interpretation, generated_signs)
|
208 |
-
|
209 |
return self._create_semiotic_state(interpretation)
|
210 |
-
|
211 |
def _requires_generation(self, interpretation: Dict[str, Any]) -> bool:
|
212 |
"""
|
213 |
Determine if new sign generation is required based on interpretation.
|
214 |
-
|
215 |
Args:
|
216 |
interpretation: The current interpretation state
|
217 |
-
|
218 |
Returns:
|
219 |
Boolean indicating if generation is needed
|
220 |
"""
|
221 |
patterns = interpretation.get("patterns", {})
|
222 |
return patterns.get("coherence", 0) < 0.5 or len(interpretation.get("meanings", {})) < 3
|
223 |
-
|
224 |
def _integrate_semiotic_state(self, interpretation: Dict[str, Any], generated_signs: Dict[str, Any]) -> SemioticState:
|
225 |
"""
|
226 |
Integrate interpretation and generated signs into a semiotic state.
|
227 |
"""
|
228 |
meaning_vector = np.random.rand(128) # Placeholder for actual meaning vector
|
229 |
sign_vector = np.random.rand(128) # Placeholder for actual sign vector
|
230 |
-
|
231 |
return SemioticState(
|
232 |
sign_level=SignLevel.SEMANTIC,
|
233 |
meaning_vector=meaning_vector,
|
@@ -237,8 +237,7 @@ class SemioticProcessor:
|
|
237 |
context_embedding=np.random.rand(128),
|
238 |
semantic_relations=interpretation.get("contextual_insights", {})
|
239 |
)
|
240 |
-
|
241 |
def _create_semiotic_state(self, interpretation: Dict[str, Any]) -> SemioticState:
|
242 |
"""Create a semiotic state from interpretation without generation."""
|
243 |
return self._integrate_semiotic_state(interpretation, {"confidence": 0.8})
|
244 |
-
|
|
|
34 |
|
35 |
class SemioticNetworkBuilder:
|
36 |
"""Builds semiotic networks from input data, representing sign relationships."""
|
37 |
+
|
38 |
def __init__(self):
|
39 |
self.relation_encoder = nn.Sequential(
|
40 |
nn.Linear(768, 256),
|
|
|
42 |
nn.Linear(256, 128)
|
43 |
)
|
44 |
self.graph_state = {}
|
45 |
+
|
46 |
def construct(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
|
47 |
"""
|
48 |
Construct a semiotic network from input data.
|
49 |
+
|
50 |
Args:
|
51 |
input_data: Dictionary containing sign and context information
|
52 |
+
|
53 |
Returns:
|
54 |
Dictionary containing the constructed semiotic network
|
55 |
"""
|
56 |
encoded_signs = self._encode_signs(input_data.get("signs", []))
|
57 |
context_embedding = self._process_context(input_data.get("context", {}))
|
58 |
relations = self._build_relations(encoded_signs, context_embedding)
|
59 |
+
|
60 |
return {
|
61 |
"signs": encoded_signs,
|
62 |
"context": context_embedding,
|
63 |
"relations": relations,
|
64 |
"meta_info": self._extract_meta_information(input_data)
|
65 |
}
|
66 |
+
|
67 |
def _encode_signs(self, signs: List[Any]) -> Dict[str, torch.Tensor]:
|
68 |
"""Encode individual signs into vector representations."""
|
69 |
encoded = {}
|
|
|
71 |
sign_tensor = torch.randn(768) # Placeholder for actual encoding
|
72 |
encoded[str(sign)] = self.relation_encoder(sign_tensor)
|
73 |
return encoded
|
74 |
+
|
75 |
def _process_context(self, context: Dict[str, Any]) -> torch.Tensor:
|
76 |
"""Process context information into an embedding."""
|
77 |
# Placeholder implementation
|
78 |
return torch.randn(128)
|
79 |
+
|
80 |
def _build_relations(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, float]:
|
81 |
"""Build relationships between signs in the context."""
|
82 |
relations = {}
|
|
|
86 |
relation_strength = torch.cosine_similarity(signs[sign1], signs[sign2], dim=0)
|
87 |
relations[f"{sign1}-{sign2}"] = float(relation_strength)
|
88 |
return relations
|
89 |
+
|
90 |
def _extract_meta_information(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
|
91 |
"""Extract meta-information about the semiotic network."""
|
92 |
return {
|
|
|
96 |
|
97 |
class SignInterpreter:
|
98 |
"""Interprets semiotic networks to extract meaning and relationships."""
|
99 |
+
|
100 |
def __init__(self):
|
101 |
self.interpretation_network = nn.Sequential(
|
102 |
nn.Linear(128, 64),
|
103 |
nn.ReLU(),
|
104 |
nn.Linear(64, 32)
|
105 |
)
|
106 |
+
|
107 |
def interpret(self, network: Dict[str, Any]) -> Dict[str, Any]:
|
108 |
"""
|
109 |
Interpret a semiotic network to extract meaningful patterns.
|
110 |
+
|
111 |
Args:
|
112 |
network: The semiotic network to interpret
|
113 |
+
|
114 |
Returns:
|
115 |
Dictionary containing interpretation results
|
116 |
"""
|
117 |
signs = network["signs"]
|
118 |
relations = network["relations"]
|
119 |
context = network["context"]
|
120 |
+
|
121 |
interpreted_meanings = self._interpret_meanings(signs, context)
|
122 |
relation_patterns = self._analyze_relations(relations)
|
123 |
contextual_insights = self._extract_contextual_insights(context)
|
124 |
+
|
125 |
return {
|
126 |
"meanings": interpreted_meanings,
|
127 |
"patterns": relation_patterns,
|
128 |
"contextual_insights": contextual_insights
|
129 |
}
|
130 |
+
|
131 |
def _interpret_meanings(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, Any]:
|
132 |
"""Extract meanings from signs in context."""
|
133 |
return {sign: {"salience": 0.8, "certainty": 0.7} for sign in signs}
|
134 |
+
|
135 |
def _analyze_relations(self, relations: Dict[str, float]) -> Dict[str, float]:
|
136 |
"""Analyze patterns in sign relations."""
|
137 |
return {"coherence": 0.8, "complexity": 0.6}
|
138 |
+
|
139 |
def _extract_contextual_insights(self, context: torch.Tensor) -> Dict[str, float]:
|
140 |
"""Extract insights from contextual information."""
|
141 |
return {"relevance": 0.75, "specificity": 0.65}
|
142 |
|
143 |
class SignGenerator:
|
144 |
"""Generates new signs based on interpretations and patterns."""
|
145 |
+
|
146 |
def __init__(self):
|
147 |
self.generator_network = nn.Sequential(
|
148 |
nn.Linear(32, 64),
|
149 |
nn.ReLU(),
|
150 |
nn.Linear(64, 128)
|
151 |
)
|
152 |
+
|
153 |
def create_signs(self, interpretation: Dict[str, Any]) -> Dict[str, Any]:
|
154 |
"""
|
155 |
Generate new signs based on interpretation.
|
156 |
+
|
157 |
Args:
|
158 |
interpretation: The interpretation to base generation on
|
159 |
+
|
160 |
Returns:
|
161 |
Dictionary containing generated signs and their properties
|
162 |
"""
|
163 |
meanings = interpretation["meanings"]
|
164 |
patterns = interpretation["patterns"]
|
165 |
+
|
166 |
generated = self._generate_from_patterns(patterns)
|
167 |
refined = self._refine_generated_signs(generated, meanings)
|
168 |
+
|
169 |
return {
|
170 |
"signs": refined,
|
171 |
"confidence": self._assess_generation_quality(refined)
|
172 |
}
|
173 |
+
|
174 |
def _generate_from_patterns(self, patterns: Dict[str, float]) -> List[torch.Tensor]:
|
175 |
"""Generate initial signs from observed patterns."""
|
176 |
return [torch.randn(128) for _ in range(3)] # Generate 3 new signs
|
177 |
+
|
178 |
def _refine_generated_signs(self, signs: List[torch.Tensor], meanings: Dict[str, Any]) -> List[Dict[str, Any]]:
|
179 |
"""Refine generated signs based on existing meanings."""
|
180 |
return [{"vector": sign, "quality": 0.7} for sign in signs]
|
181 |
+
|
182 |
def _assess_generation_quality(self, signs: List[Dict[str, Any]]) -> float:
|
183 |
"""Assess the quality of generated signs."""
|
184 |
return sum(sign["quality"] for sign in signs) / len(signs)
|
|
|
193 |
self.network_builder = SemioticNetworkBuilder()
|
194 |
self.interpreter = SignInterpreter()
|
195 |
self.generator = SignGenerator()
|
196 |
+
|
197 |
async def process(self, input_data: Dict[str, Any]) -> SemioticState:
|
198 |
# Build semiotic network
|
199 |
network = self.network_builder.construct(input_data)
|
200 |
+
|
201 |
# Interpret the network
|
202 |
interpretation = self.interpreter.interpret(network)
|
203 |
+
|
204 |
# Generate new signs if needed
|
205 |
if self._requires_generation(interpretation):
|
206 |
generated_signs = self.generator.create_signs(interpretation)
|
207 |
return self._integrate_semiotic_state(interpretation, generated_signs)
|
208 |
+
|
209 |
return self._create_semiotic_state(interpretation)
|
210 |
+
|
211 |
def _requires_generation(self, interpretation: Dict[str, Any]) -> bool:
|
212 |
"""
|
213 |
Determine if new sign generation is required based on interpretation.
|
214 |
+
|
215 |
Args:
|
216 |
interpretation: The current interpretation state
|
217 |
+
|
218 |
Returns:
|
219 |
Boolean indicating if generation is needed
|
220 |
"""
|
221 |
patterns = interpretation.get("patterns", {})
|
222 |
return patterns.get("coherence", 0) < 0.5 or len(interpretation.get("meanings", {})) < 3
|
223 |
+
|
224 |
def _integrate_semiotic_state(self, interpretation: Dict[str, Any], generated_signs: Dict[str, Any]) -> SemioticState:
|
225 |
"""
|
226 |
Integrate interpretation and generated signs into a semiotic state.
|
227 |
"""
|
228 |
meaning_vector = np.random.rand(128) # Placeholder for actual meaning vector
|
229 |
sign_vector = np.random.rand(128) # Placeholder for actual sign vector
|
230 |
+
|
231 |
return SemioticState(
|
232 |
sign_level=SignLevel.SEMANTIC,
|
233 |
meaning_vector=meaning_vector,
|
|
|
237 |
context_embedding=np.random.rand(128),
|
238 |
semantic_relations=interpretation.get("contextual_insights", {})
|
239 |
)
|
240 |
+
|
241 |
def _create_semiotic_state(self, interpretation: Dict[str, Any]) -> SemioticState:
|
242 |
"""Create a semiotic state from interpretation without generation."""
|
243 |
return self._integrate_semiotic_state(interpretation, {"confidence": 0.8})
|
|
src/api/__init__.py
CHANGED
@@ -1 +1 @@
|
|
1 |
-
from .chat_endpoint import chat_router
|
|
|
1 |
+
from .chat_endpoint import chat_router
|
src/api/chat_endpoint.py
CHANGED
@@ -23,6 +23,6 @@ async def chat(
|
|
23 |
"top_p": top_p
|
24 |
}
|
25 |
}
|
26 |
-
|
27 |
response = await model.generate_response(input_data)
|
28 |
-
return response
|
|
|
23 |
"top_p": top_p
|
24 |
}
|
25 |
}
|
26 |
+
|
27 |
response = await model.generate_response(input_data)
|
28 |
+
return response
|
src/core/__init__.py
CHANGED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
src/core/awareness_engine.py
CHANGED
@@ -11,18 +11,18 @@ class AwarenessEngine:
|
|
11 |
nn.ReLU(),
|
12 |
nn.Linear(512, 256)
|
13 |
)
|
14 |
-
|
15 |
async def process(self, input_state: Dict[str, Any]) -> AwarenessState:
|
16 |
attention_vector = self._compute_attention(input_state)
|
17 |
awareness_level = self._calculate_awareness(attention_vector)
|
18 |
level = self._determine_awareness_level(awareness_level)
|
19 |
-
|
20 |
cognitive_state = {
|
21 |
"attention_focus": self._compute_attention_focus(attention_vector),
|
22 |
"processing_depth": awareness_level,
|
23 |
"cognitive_load": self._estimate_cognitive_load(input_state)
|
24 |
}
|
25 |
-
|
26 |
return AwarenessState(
|
27 |
attention_vector=attention_vector.detach().numpy(),
|
28 |
awareness_level=awareness_level,
|
@@ -31,13 +31,13 @@ class AwarenessEngine:
|
|
31 |
consciousness_level=0.8,
|
32 |
level=level
|
33 |
)
|
34 |
-
|
35 |
def _compute_attention_focus(self, attention_vector: torch.Tensor) -> float:
|
36 |
return float(torch.mean(attention_vector))
|
37 |
-
|
38 |
def _estimate_cognitive_load(self, input_state: Dict[str, Any]) -> float:
|
39 |
return 0.5 # Default mid-range load
|
40 |
-
|
41 |
def _determine_awareness_level(self, awareness_level: float) -> AwarenessLevel:
|
42 |
if awareness_level > 0.8:
|
43 |
return AwarenessLevel.TRANSCENDENT
|
@@ -48,15 +48,15 @@ class AwarenessEngine:
|
|
48 |
elif awareness_level > 0.2:
|
49 |
return AwarenessLevel.PERCEPTUAL
|
50 |
return AwarenessLevel.BASIC
|
51 |
-
|
52 |
def _compute_attention(self, input_state: Dict[str, Any]) -> torch.Tensor:
|
53 |
return torch.ones(256)
|
54 |
-
|
55 |
def _calculate_awareness(self, attention_vector: torch.Tensor) -> float:
|
56 |
return 0.8
|
57 |
-
|
58 |
def _process_cognitive_state(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
|
59 |
return {"state": "active", "focus_level": 0.9}
|
60 |
-
|
61 |
def _compute_emotional_valence(self, input_state: Dict[str, Any]) -> float:
|
62 |
-
return 0.5
|
|
|
11 |
nn.ReLU(),
|
12 |
nn.Linear(512, 256)
|
13 |
)
|
14 |
+
|
15 |
async def process(self, input_state: Dict[str, Any]) -> AwarenessState:
|
16 |
attention_vector = self._compute_attention(input_state)
|
17 |
awareness_level = self._calculate_awareness(attention_vector)
|
18 |
level = self._determine_awareness_level(awareness_level)
|
19 |
+
|
20 |
cognitive_state = {
|
21 |
"attention_focus": self._compute_attention_focus(attention_vector),
|
22 |
"processing_depth": awareness_level,
|
23 |
"cognitive_load": self._estimate_cognitive_load(input_state)
|
24 |
}
|
25 |
+
|
26 |
return AwarenessState(
|
27 |
attention_vector=attention_vector.detach().numpy(),
|
28 |
awareness_level=awareness_level,
|
|
|
31 |
consciousness_level=0.8,
|
32 |
level=level
|
33 |
)
|
34 |
+
|
35 |
def _compute_attention_focus(self, attention_vector: torch.Tensor) -> float:
|
36 |
return float(torch.mean(attention_vector))
|
37 |
+
|
38 |
def _estimate_cognitive_load(self, input_state: Dict[str, Any]) -> float:
|
39 |
return 0.5 # Default mid-range load
|
40 |
+
|
41 |
def _determine_awareness_level(self, awareness_level: float) -> AwarenessLevel:
|
42 |
if awareness_level > 0.8:
|
43 |
return AwarenessLevel.TRANSCENDENT
|
|
|
48 |
elif awareness_level > 0.2:
|
49 |
return AwarenessLevel.PERCEPTUAL
|
50 |
return AwarenessLevel.BASIC
|
51 |
+
|
52 |
def _compute_attention(self, input_state: Dict[str, Any]) -> torch.Tensor:
|
53 |
return torch.ones(256)
|
54 |
+
|
55 |
def _calculate_awareness(self, attention_vector: torch.Tensor) -> float:
|
56 |
return 0.8
|
57 |
+
|
58 |
def _process_cognitive_state(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
|
59 |
return {"state": "active", "focus_level": 0.9}
|
60 |
+
|
61 |
def _compute_emotional_valence(self, input_state: Dict[str, Any]) -> float:
|
62 |
+
return 0.5
|
src/core/cognitive_microservices.py
CHANGED
@@ -2,6 +2,11 @@ from enum import Enum
|
|
2 |
from typing import Dict, Any, List
|
3 |
import asyncio
|
4 |
|
|
|
|
|
|
|
|
|
|
|
5 |
class ServiceType(Enum):
|
6 |
PERCEPTION = "perception"
|
7 |
REASONING = "reasoning"
|
@@ -15,26 +20,55 @@ class CognitiveMicroservice:
|
|
15 |
self.state = {}
|
16 |
self.connections = []
|
17 |
self.ontology = OntologicalDatabase()
|
18 |
-
|
19 |
async def process(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
|
20 |
preprocessed = await self._preprocess(input_data)
|
21 |
result = await self._core_processing(preprocessed)
|
22 |
return await self._postprocess(result)
|
23 |
-
|
24 |
async def _preprocess(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
25 |
# Service-specific preprocessing
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
class CognitiveOrchestrator:
|
29 |
def __init__(self):
|
30 |
self.services: Dict[ServiceType, List[CognitiveMicroservice]] = {}
|
31 |
self.routing_table = {}
|
32 |
self._initialize_services()
|
33 |
-
|
34 |
async def process_cognitive_task(self, task: Dict[str, Any]) -> Dict[str, Any]:
|
35 |
service_chain = self._determine_service_chain(task)
|
36 |
return await self._execute_service_chain(service_chain, task)
|
37 |
-
|
38 |
def _determine_service_chain(self, task: Dict[str, Any]) -> List[ServiceType]:
|
39 |
task_type = task.get('type', 'general')
|
40 |
-
return self.routing_table.get(task_type, self._default_chain())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from typing import Dict, Any, List
|
3 |
import asyncio
|
4 |
|
5 |
+
class OntologicalDatabase:
|
6 |
+
"""A database for ontological information."""
|
7 |
+
def __init__(self):
|
8 |
+
self.data = {}
|
9 |
+
|
10 |
class ServiceType(Enum):
|
11 |
PERCEPTION = "perception"
|
12 |
REASONING = "reasoning"
|
|
|
20 |
self.state = {}
|
21 |
self.connections = []
|
22 |
self.ontology = OntologicalDatabase()
|
23 |
+
|
24 |
async def process(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
|
25 |
preprocessed = await self._preprocess(input_data)
|
26 |
result = await self._core_processing(preprocessed)
|
27 |
return await self._postprocess(result)
|
28 |
+
|
29 |
async def _preprocess(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
30 |
# Service-specific preprocessing
|
31 |
+
return data
|
32 |
+
|
33 |
+
async def _core_processing(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
34 |
+
# Core processing logic
|
35 |
+
return data
|
36 |
+
|
37 |
+
async def _postprocess(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
38 |
+
# Post processing logic
|
39 |
+
return data
|
40 |
|
41 |
class CognitiveOrchestrator:
|
42 |
def __init__(self):
|
43 |
self.services: Dict[ServiceType, List[CognitiveMicroservice]] = {}
|
44 |
self.routing_table = {}
|
45 |
self._initialize_services()
|
46 |
+
|
47 |
async def process_cognitive_task(self, task: Dict[str, Any]) -> Dict[str, Any]:
|
48 |
service_chain = self._determine_service_chain(task)
|
49 |
return await self._execute_service_chain(service_chain, task)
|
50 |
+
|
51 |
def _determine_service_chain(self, task: Dict[str, Any]) -> List[ServiceType]:
|
52 |
task_type = task.get('type', 'general')
|
53 |
+
return self.routing_table.get(task_type, self._default_chain())
|
54 |
+
|
55 |
+
def _initialize_services(self):
|
56 |
+
# Initialize cognitive services
|
57 |
+
for service_type in ServiceType:
|
58 |
+
self.services[service_type] = []
|
59 |
+
|
60 |
+
# Set up default routing
|
61 |
+
self.routing_table = {}
|
62 |
+
|
63 |
+
async def _execute_service_chain(self, service_chain: List[ServiceType],
|
64 |
+
task: Dict[str, Any]) -> Dict[str, Any]:
|
65 |
+
result = task
|
66 |
+
for service_type in service_chain:
|
67 |
+
if service_type in self.services and self.services[service_type]:
|
68 |
+
service = self.services[service_type][0] # Use first available service
|
69 |
+
result = await service.process(result)
|
70 |
+
return result
|
71 |
+
|
72 |
+
def _default_chain(self) -> List[ServiceType]:
|
73 |
+
# Default processing chain
|
74 |
+
return [ServiceType.PERCEPTION, ServiceType.REASONING]
|
src/core/consciousness_emergence.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from enum import Enum
|
2 |
from dataclasses import dataclass
|
3 |
import numpy as np
|
4 |
-
from typing import Dict, List, Optional
|
5 |
|
6 |
class ConsciousnessPhase(Enum):
|
7 |
PROTO = "proto_consciousness"
|
@@ -22,9 +22,21 @@ class ConsciousnessEmergence:
|
|
22 |
self.phase_history = []
|
23 |
self.awareness_threshold = 0.7
|
24 |
self.integration_threshold = 0.8
|
25 |
-
|
26 |
def evaluate_phase_transition(self, system_state: Dict[str, Any]) -> Optional[ConsciousnessPhase]:
|
27 |
current_metrics = self._compute_phase_metrics(system_state)
|
28 |
if self._should_transition(current_metrics):
|
29 |
return self._determine_next_phase(current_metrics)
|
30 |
-
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from enum import Enum
|
2 |
from dataclasses import dataclass
|
3 |
import numpy as np
|
4 |
+
from typing import Dict, List, Optional, Any
|
5 |
|
6 |
class ConsciousnessPhase(Enum):
|
7 |
PROTO = "proto_consciousness"
|
|
|
22 |
self.phase_history = []
|
23 |
self.awareness_threshold = 0.7
|
24 |
self.integration_threshold = 0.8
|
25 |
+
|
26 |
def evaluate_phase_transition(self, system_state: Dict[str, Any]) -> Optional[ConsciousnessPhase]:
|
27 |
current_metrics = self._compute_phase_metrics(system_state)
|
28 |
if self._should_transition(current_metrics):
|
29 |
return self._determine_next_phase(current_metrics)
|
30 |
+
return None
|
31 |
+
|
32 |
+
def _compute_phase_metrics(self, system_state: Dict[str, Any]) -> Dict[str, float]:
|
33 |
+
# Implementation needed
|
34 |
+
return {}
|
35 |
+
|
36 |
+
def _should_transition(self, metrics: Dict[str, float]) -> bool:
|
37 |
+
# Implementation needed
|
38 |
+
return False
|
39 |
+
|
40 |
+
def _determine_next_phase(self, metrics: Dict[str, float]) -> ConsciousnessPhase:
|
41 |
+
# Implementation needed
|
42 |
+
return self.current_phase
|
src/core/consciousness_kernel.py
CHANGED
@@ -31,7 +31,7 @@ class MetaMonitor:
|
|
31 |
return {"self_reflection": 0.6, "uncertainty": 0.2}
|
32 |
|
33 |
class PhenomenologicalSimulator:
|
34 |
-
async def simulate(self, phi_value: float, attention_state: Dict[str, float],
|
35 |
meta_state: Dict[str, Any]) -> Dict[str, Any]:
|
36 |
"""Simulate the phenomenological experience based on input parameters."""
|
37 |
# Placeholder implementation
|
@@ -66,55 +66,60 @@ class ConsciousnessKernel:
|
|
66 |
nn.Linear(512, 256)
|
67 |
)
|
68 |
self.integration_module = nn.Linear(256, 128)
|
69 |
-
|
70 |
# State tracking
|
71 |
self.state_history: List[ConsciousnessState] = []
|
72 |
-
|
73 |
# Dimension parameters
|
74 |
self.awareness_dimension: int = 256
|
75 |
self.emotional_dimension: int = 64
|
76 |
-
|
77 |
# Core components
|
78 |
self.awareness_engine = AwarenessEngine()
|
79 |
self.integration_manager = IntegrationManager()
|
80 |
self.self_model = DynamicSelfModel()
|
81 |
self.experience_simulator = ExperienceSimulator()
|
82 |
-
|
83 |
# For traditional consciousness processing
|
84 |
self.phi_prime_calculator = PhiPrimeCalculator()
|
85 |
self.attention_system = AttentionSystem()
|
86 |
self.meta_monitor = MetaMonitor()
|
87 |
self.phenomenological_simulator = PhenomenologicalSimulator()
|
88 |
-
|
89 |
async def process_consciousness_cycle(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
|
90 |
"""
|
91 |
Process a complete consciousness cycle using the async components.
|
92 |
-
|
93 |
Args:
|
94 |
input_state: The input state containing sensory and contextual information
|
95 |
-
|
96 |
Returns:
|
97 |
A dictionary containing the processed conscious output
|
98 |
"""
|
99 |
awareness = await self.awareness_engine.process(input_state)
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
103 |
experience = await self.experience_simulator.simulate(
|
104 |
-
awareness=
|
105 |
-
integrated_state=
|
106 |
self_model=self_update
|
107 |
)
|
108 |
-
|
109 |
# Record the state for historical tracking
|
110 |
if isinstance(integrated_state, ConsciousnessState):
|
111 |
self.state_history.append(integrated_state)
|
112 |
-
|
113 |
return await self._generate_conscious_output(experience)
|
114 |
def _initialize_consciousness_state(self) -> ConsciousnessState:
|
115 |
"""
|
116 |
Initialize a default consciousness state with zero values.
|
117 |
-
|
118 |
Returns:
|
119 |
A default ConsciousnessState object
|
120 |
"""
|
@@ -126,37 +131,37 @@ class ConsciousnessKernel:
|
|
126 |
attention_focus={},
|
127 |
temporal_continuity=0.0
|
128 |
)
|
129 |
-
|
130 |
async def process_consciousness(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
|
131 |
"""
|
132 |
Process consciousness using the traditional phi-based approach.
|
133 |
This is an alternative to process_consciousness_cycle that uses different components.
|
134 |
-
|
135 |
Args:
|
136 |
input_state: The input state containing sensory and contextual information
|
137 |
-
|
138 |
Returns:
|
139 |
A dictionary containing the processed conscious output
|
140 |
"""
|
141 |
phi_value = await self.phi_prime_calculator.compute(input_state)
|
142 |
attention_state = await self.attention_system.allocate(input_state)
|
143 |
meta_state = await self.meta_monitor.evaluate(input_state)
|
144 |
-
|
145 |
phenomenological_experience = await self.phenomenological_simulator.simulate(
|
146 |
phi_value,
|
147 |
attention_state,
|
148 |
meta_state
|
149 |
)
|
150 |
-
|
151 |
return await self._integrate_consciousness_state(phenomenological_experience)
|
152 |
-
|
153 |
async def _generate_conscious_output(self, experience: Dict[str, Any]) -> Dict[str, Any]:
|
154 |
"""
|
155 |
Generate the final conscious output based on the simulated experience.
|
156 |
-
|
157 |
Args:
|
158 |
experience: The simulated experience data
|
159 |
-
|
160 |
Returns:
|
161 |
A dictionary containing the final conscious output
|
162 |
"""
|
@@ -168,16 +173,16 @@ class ConsciousnessKernel:
|
|
168 |
"phenomenal_qualities": experience.get("qualia", {}),
|
169 |
"teleological_vector": experience.get("purpose_direction", {})
|
170 |
}
|
171 |
-
|
172 |
return output
|
173 |
-
|
174 |
async def _integrate_consciousness_state(self, experience: Dict[str, Any]) -> Dict[str, Any]:
|
175 |
"""
|
176 |
Integrate a phenomenological experience into a consciousness state.
|
177 |
-
|
178 |
Args:
|
179 |
experience: The phenomenological experience to integrate
|
180 |
-
|
181 |
Returns:
|
182 |
A dictionary containing the integrated consciousness state
|
183 |
"""
|
@@ -191,5 +196,5 @@ class ConsciousnessKernel:
|
|
191 |
"qualia_map": experience.get("qualia", {}),
|
192 |
"response": experience.get("content", "")
|
193 |
}
|
194 |
-
|
195 |
return integrated_output
|
|
|
31 |
return {"self_reflection": 0.6, "uncertainty": 0.2}
|
32 |
|
33 |
class PhenomenologicalSimulator:
|
34 |
+
async def simulate(self, phi_value: float, attention_state: Dict[str, float],
|
35 |
meta_state: Dict[str, Any]) -> Dict[str, Any]:
|
36 |
"""Simulate the phenomenological experience based on input parameters."""
|
37 |
# Placeholder implementation
|
|
|
66 |
nn.Linear(512, 256)
|
67 |
)
|
68 |
self.integration_module = nn.Linear(256, 128)
|
69 |
+
|
70 |
# State tracking
|
71 |
self.state_history: List[ConsciousnessState] = []
|
72 |
+
|
73 |
# Dimension parameters
|
74 |
self.awareness_dimension: int = 256
|
75 |
self.emotional_dimension: int = 64
|
76 |
+
|
77 |
# Core components
|
78 |
self.awareness_engine = AwarenessEngine()
|
79 |
self.integration_manager = IntegrationManager()
|
80 |
self.self_model = DynamicSelfModel()
|
81 |
self.experience_simulator = ExperienceSimulator()
|
82 |
+
|
83 |
# For traditional consciousness processing
|
84 |
self.phi_prime_calculator = PhiPrimeCalculator()
|
85 |
self.attention_system = AttentionSystem()
|
86 |
self.meta_monitor = MetaMonitor()
|
87 |
self.phenomenological_simulator = PhenomenologicalSimulator()
|
88 |
+
|
89 |
async def process_consciousness_cycle(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
|
90 |
"""
|
91 |
Process a complete consciousness cycle using the async components.
|
92 |
+
|
93 |
Args:
|
94 |
input_state: The input state containing sensory and contextual information
|
95 |
+
|
96 |
Returns:
|
97 |
A dictionary containing the processed conscious output
|
98 |
"""
|
99 |
awareness = await self.awareness_engine.process(input_state)
|
100 |
+
# Convert awareness to a Dict[str, Any] before passing to integrate
|
101 |
+
awareness_dict = awareness if isinstance(awareness, dict) else awareness.__dict__
|
102 |
+
integrated_state = await self.integration_manager.integrate(awareness_dict)
|
103 |
+
|
104 |
+
# Convert integrated_state to Dict[str, Any] before passing to update
|
105 |
+
integrated_dict = integrated_state if isinstance(integrated_state, dict) else integrated_state.__dict__
|
106 |
+
self_update = await self.self_model.update(integrated_dict)
|
107 |
+
|
108 |
experience = await self.experience_simulator.simulate(
|
109 |
+
awareness=awareness_dict,
|
110 |
+
integrated_state=integrated_dict,
|
111 |
self_model=self_update
|
112 |
)
|
113 |
+
|
114 |
# Record the state for historical tracking
|
115 |
if isinstance(integrated_state, ConsciousnessState):
|
116 |
self.state_history.append(integrated_state)
|
117 |
+
|
118 |
return await self._generate_conscious_output(experience)
|
119 |
def _initialize_consciousness_state(self) -> ConsciousnessState:
|
120 |
"""
|
121 |
Initialize a default consciousness state with zero values.
|
122 |
+
|
123 |
Returns:
|
124 |
A default ConsciousnessState object
|
125 |
"""
|
|
|
131 |
attention_focus={},
|
132 |
temporal_continuity=0.0
|
133 |
)
|
134 |
+
|
135 |
async def process_consciousness(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
|
136 |
"""
|
137 |
Process consciousness using the traditional phi-based approach.
|
138 |
This is an alternative to process_consciousness_cycle that uses different components.
|
139 |
+
|
140 |
Args:
|
141 |
input_state: The input state containing sensory and contextual information
|
142 |
+
|
143 |
Returns:
|
144 |
A dictionary containing the processed conscious output
|
145 |
"""
|
146 |
phi_value = await self.phi_prime_calculator.compute(input_state)
|
147 |
attention_state = await self.attention_system.allocate(input_state)
|
148 |
meta_state = await self.meta_monitor.evaluate(input_state)
|
149 |
+
|
150 |
phenomenological_experience = await self.phenomenological_simulator.simulate(
|
151 |
phi_value,
|
152 |
attention_state,
|
153 |
meta_state
|
154 |
)
|
155 |
+
|
156 |
return await self._integrate_consciousness_state(phenomenological_experience)
|
157 |
+
|
158 |
async def _generate_conscious_output(self, experience: Dict[str, Any]) -> Dict[str, Any]:
|
159 |
"""
|
160 |
Generate the final conscious output based on the simulated experience.
|
161 |
+
|
162 |
Args:
|
163 |
experience: The simulated experience data
|
164 |
+
|
165 |
Returns:
|
166 |
A dictionary containing the final conscious output
|
167 |
"""
|
|
|
173 |
"phenomenal_qualities": experience.get("qualia", {}),
|
174 |
"teleological_vector": experience.get("purpose_direction", {})
|
175 |
}
|
176 |
+
|
177 |
return output
|
178 |
+
|
179 |
async def _integrate_consciousness_state(self, experience: Dict[str, Any]) -> Dict[str, Any]:
|
180 |
"""
|
181 |
Integrate a phenomenological experience into a consciousness state.
|
182 |
+
|
183 |
Args:
|
184 |
experience: The phenomenological experience to integrate
|
185 |
+
|
186 |
Returns:
|
187 |
A dictionary containing the integrated consciousness state
|
188 |
"""
|
|
|
196 |
"qualia_map": experience.get("qualia", {}),
|
197 |
"response": experience.get("content", "")
|
198 |
}
|
199 |
+
|
200 |
return integrated_output
|
src/core/consciousness_matrix.py
CHANGED
@@ -19,18 +19,26 @@ class ConsciousnessMatrix:
|
|
19 |
attention_state={},
|
20 |
self_awareness_level=0.0
|
21 |
)
|
22 |
-
|
23 |
def process_consciousness(self, input_state):
|
24 |
# Implement consciousness processing based on IIT and Global Workspace Theory
|
25 |
self._update_phi_prime()
|
26 |
self._process_emotional_state()
|
27 |
self._update_attention_allocation()
|
28 |
self._evaluate_self_awareness()
|
29 |
-
|
30 |
def _update_phi_prime(self):
|
31 |
# Implementation of modified Φ (phi) metrics
|
32 |
pass
|
33 |
|
34 |
def _process_emotional_state(self):
|
35 |
# 128-dimensional emotional state processing
|
36 |
-
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
attention_state={},
|
20 |
self_awareness_level=0.0
|
21 |
)
|
22 |
+
|
23 |
def process_consciousness(self, input_state):
|
24 |
# Implement consciousness processing based on IIT and Global Workspace Theory
|
25 |
self._update_phi_prime()
|
26 |
self._process_emotional_state()
|
27 |
self._update_attention_allocation()
|
28 |
self._evaluate_self_awareness()
|
29 |
+
|
30 |
def _update_phi_prime(self):
|
31 |
# Implementation of modified Φ (phi) metrics
|
32 |
pass
|
33 |
|
34 |
def _process_emotional_state(self):
|
35 |
# 128-dimensional emotional state processing
|
36 |
+
pass
|
37 |
+
|
38 |
+
def _update_attention_allocation(self):
|
39 |
+
# Update attention allocation based on current state
|
40 |
+
pass
|
41 |
+
|
42 |
+
def _evaluate_self_awareness(self):
|
43 |
+
# Evaluate and update self-awareness level
|
44 |
+
pass
|
src/core/consciousness_model.py
CHANGED
@@ -1,14 +1,24 @@
|
|
1 |
from typing import Dict, Any
|
|
|
2 |
import torch.nn as nn
|
|
|
3 |
|
4 |
class ConsciousnessModel(nn.Module):
|
5 |
def __init__(self, config: Dict[str, Any]):
|
6 |
super().__init__()
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def forward(self, x):
|
12 |
-
x = self.self_awareness(x)
|
13 |
-
x = self.
|
14 |
-
|
|
|
|
|
|
1 |
from typing import Dict, Any
|
2 |
+
import torch
|
3 |
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
|
6 |
class ConsciousnessModel(nn.Module):
|
7 |
def __init__(self, config: Dict[str, Any]):
|
8 |
super().__init__()
|
9 |
+
input_dim = config.get('input_dim', 768)
|
10 |
+
hidden_dim1 = config.get('hidden_dim1', 128)
|
11 |
+
hidden_dim2 = config.get('hidden_dim2', 64)
|
12 |
+
output_dim = config.get('output_dim', 32)
|
13 |
+
|
14 |
+
self.self_awareness = nn.Linear(input_dim, hidden_dim1)
|
15 |
+
self.meta_cognitive = nn.Linear(hidden_dim1, hidden_dim2)
|
16 |
+
self.phenomenal = nn.Linear(hidden_dim2, output_dim)
|
17 |
+
self.dropout = nn.Dropout(config.get('dropout', 0.1))
|
18 |
+
|
19 |
def forward(self, x):
|
20 |
+
x = F.relu(self.self_awareness(x))
|
21 |
+
x = self.dropout(x)
|
22 |
+
x = F.relu(self.meta_cognitive(x))
|
23 |
+
x = self.dropout(x)
|
24 |
+
return self.phenomenal(x)
|
src/core/consciousness_modules.py
CHANGED
@@ -1,25 +1,47 @@
|
|
1 |
from enum import Enum
|
2 |
-
from typing import Dict, List, Optional
|
3 |
import asyncio
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
class ConsciousnessModule:
|
6 |
def __init__(self, module_id: int):
|
7 |
self.module_id = module_id
|
8 |
self.state = ConsciousnessState()
|
9 |
self.npu = NeuralProcessingUnit()
|
10 |
self.memory = MemoryHierarchy()
|
11 |
-
|
12 |
async def process_consciousness(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
|
13 |
neural_processing = self.npu.process_neural_task(input_state['neural_data'])
|
14 |
memory_access = self.memory.access_memory(input_state['memory_key'])
|
15 |
-
|
16 |
results = await asyncio.gather(neural_processing, memory_access)
|
17 |
return self._integrate_consciousness_results(results)
|
18 |
-
|
19 |
def _integrate_consciousness_results(self, results: List[Any]) -> Dict[str, Any]:
|
20 |
neural_result, memory_result = results
|
21 |
return {
|
22 |
'consciousness_level': self._compute_consciousness_level(neural_result),
|
23 |
'integrated_state': self._merge_states(neural_result, memory_result),
|
24 |
'module_status': self.state.current_status
|
25 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from enum import Enum
|
2 |
+
from typing import Dict, List, Optional, Any
|
3 |
import asyncio
|
4 |
|
5 |
+
class ConsciousnessState:
|
6 |
+
def __init__(self):
|
7 |
+
self.current_status = "active"
|
8 |
+
|
9 |
+
class NeuralProcessingUnit:
|
10 |
+
async def process_neural_task(self, neural_data):
|
11 |
+
# Process neural data
|
12 |
+
return {"neural_result": neural_data}
|
13 |
+
|
14 |
+
class MemoryHierarchy:
|
15 |
+
async def access_memory(self, memory_key):
|
16 |
+
# Access memory based on key
|
17 |
+
return {"memory_result": memory_key}
|
18 |
+
|
19 |
class ConsciousnessModule:
|
20 |
def __init__(self, module_id: int):
|
21 |
self.module_id = module_id
|
22 |
self.state = ConsciousnessState()
|
23 |
self.npu = NeuralProcessingUnit()
|
24 |
self.memory = MemoryHierarchy()
|
25 |
+
|
26 |
async def process_consciousness(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
|
27 |
neural_processing = self.npu.process_neural_task(input_state['neural_data'])
|
28 |
memory_access = self.memory.access_memory(input_state['memory_key'])
|
29 |
+
|
30 |
results = await asyncio.gather(neural_processing, memory_access)
|
31 |
return self._integrate_consciousness_results(results)
|
32 |
+
|
33 |
def _integrate_consciousness_results(self, results: List[Any]) -> Dict[str, Any]:
|
34 |
neural_result, memory_result = results
|
35 |
return {
|
36 |
'consciousness_level': self._compute_consciousness_level(neural_result),
|
37 |
'integrated_state': self._merge_states(neural_result, memory_result),
|
38 |
'module_status': self.state.current_status
|
39 |
+
}
|
40 |
+
|
41 |
+
def _compute_consciousness_level(self, neural_result: Dict[str, Any]) -> float:
|
42 |
+
# Compute consciousness level based on neural results
|
43 |
+
return 0.85
|
44 |
+
|
45 |
+
def _merge_states(self, neural_result: Dict[str, Any], memory_result: Dict[str, Any]) -> Dict[str, Any]:
|
46 |
+
# Merge neural and memory states
|
47 |
+
return {**neural_result, **memory_result}
|
src/core/dynamic_self_model.py
CHANGED
@@ -46,10 +46,10 @@ class DynamicSelfModel:
|
|
46 |
async def update(self, integrated_state: Dict[str, Any]) -> Dict[str, Any]:
|
47 |
"""
|
48 |
Update the self model based on new integrated state information.
|
49 |
-
|
50 |
Args:
|
51 |
integrated_state: Dictionary containing the new integrated state information
|
52 |
-
|
53 |
Returns:
|
54 |
Dictionary containing the updated self model state
|
55 |
"""
|
@@ -97,6 +97,8 @@ class DynamicSelfModel:
|
|
97 |
for key, value in new_beliefs.items():
|
98 |
if key in updated_beliefs:
|
99 |
updated_beliefs[key] = 0.7 * updated_beliefs[key] + 0.3 * value
|
|
|
|
|
100 |
return updated_beliefs
|
101 |
|
102 |
def _update_goals(self, new_goals: Dict[str, float]) -> Dict[str, float]:
|
@@ -105,6 +107,8 @@ class DynamicSelfModel:
|
|
105 |
for key, value in new_goals.items():
|
106 |
if key in updated_goals:
|
107 |
updated_goals[key] = 0.8 * updated_goals[key] + 0.2 * value
|
|
|
|
|
108 |
return updated_goals
|
109 |
|
110 |
def _update_emotions(self, new_emotions: Dict[str, float]) -> Dict[str, float]:
|
@@ -113,6 +117,8 @@ class DynamicSelfModel:
|
|
113 |
for key, value in new_emotions.items():
|
114 |
if key in updated_emotions:
|
115 |
updated_emotions[key] = 0.5 * updated_emotions[key] + 0.5 * value
|
|
|
|
|
116 |
return updated_emotions
|
117 |
|
118 |
def _update_metacognition(self, new_meta: Dict[str, Any]) -> Dict[str, Any]:
|
@@ -124,6 +130,8 @@ class DynamicSelfModel:
|
|
124 |
updated_meta[key] = 0.6 * updated_meta[key] + 0.4 * value
|
125 |
else:
|
126 |
updated_meta[key] = value
|
|
|
|
|
127 |
return updated_meta
|
128 |
|
129 |
def _get_current_state(self) -> Dict[str, Any]:
|
@@ -135,4 +143,3 @@ class DynamicSelfModel:
|
|
135 |
"emotions": self.state.emotional_state,
|
136 |
"metacognition": self.state.metacognitive_state
|
137 |
}
|
138 |
-
|
|
|
46 |
async def update(self, integrated_state: Dict[str, Any]) -> Dict[str, Any]:
|
47 |
"""
|
48 |
Update the self model based on new integrated state information.
|
49 |
+
|
50 |
Args:
|
51 |
integrated_state: Dictionary containing the new integrated state information
|
52 |
+
|
53 |
Returns:
|
54 |
Dictionary containing the updated self model state
|
55 |
"""
|
|
|
97 |
for key, value in new_beliefs.items():
|
98 |
if key in updated_beliefs:
|
99 |
updated_beliefs[key] = 0.7 * updated_beliefs[key] + 0.3 * value
|
100 |
+
else:
|
101 |
+
updated_beliefs[key] = value
|
102 |
return updated_beliefs
|
103 |
|
104 |
def _update_goals(self, new_goals: Dict[str, float]) -> Dict[str, float]:
|
|
|
107 |
for key, value in new_goals.items():
|
108 |
if key in updated_goals:
|
109 |
updated_goals[key] = 0.8 * updated_goals[key] + 0.2 * value
|
110 |
+
else:
|
111 |
+
updated_goals[key] = value
|
112 |
return updated_goals
|
113 |
|
114 |
def _update_emotions(self, new_emotions: Dict[str, float]) -> Dict[str, float]:
|
|
|
117 |
for key, value in new_emotions.items():
|
118 |
if key in updated_emotions:
|
119 |
updated_emotions[key] = 0.5 * updated_emotions[key] + 0.5 * value
|
120 |
+
else:
|
121 |
+
updated_emotions[key] = value
|
122 |
return updated_emotions
|
123 |
|
124 |
def _update_metacognition(self, new_meta: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
130 |
updated_meta[key] = 0.6 * updated_meta[key] + 0.4 * value
|
131 |
else:
|
132 |
updated_meta[key] = value
|
133 |
+
else:
|
134 |
+
updated_meta[key] = value
|
135 |
return updated_meta
|
136 |
|
137 |
def _get_current_state(self) -> Dict[str, Any]:
|
|
|
143 |
"emotions": self.state.emotional_state,
|
144 |
"metacognition": self.state.metacognitive_state
|
145 |
}
|
|
src/core/emotional_intelligence.py
CHANGED
@@ -15,11 +15,19 @@ class EmotionalProcessor:
|
|
15 |
def __init__(self):
|
16 |
self.emotional_memory = {}
|
17 |
self.emotion_vectors = self._initialize_emotion_vectors()
|
18 |
-
|
19 |
def process_emotional_context(self, input_data: Dict[str, Any]) -> EmotionalState:
|
20 |
# Process emotional context implementation
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
def _initialize_emotion_vectors(self) -> Dict[str, List[float]]:
|
24 |
# Initialize emotion vectors implementation
|
25 |
-
|
|
|
|
15 |
def __init__(self):
|
16 |
self.emotional_memory = {}
|
17 |
self.emotion_vectors = self._initialize_emotion_vectors()
|
18 |
+
|
19 |
def process_emotional_context(self, input_data: Dict[str, Any]) -> EmotionalState:
|
20 |
# Process emotional context implementation
|
21 |
+
# Returning a default emotional state to fix the return type error
|
22 |
+
return EmotionalState(
|
23 |
+
valence=0.0,
|
24 |
+
arousal=0.0,
|
25 |
+
dominance=0.0,
|
26 |
+
emotions=[],
|
27 |
+
intensity={}
|
28 |
+
)
|
29 |
|
30 |
def _initialize_emotion_vectors(self) -> Dict[str, List[float]]:
|
31 |
# Initialize emotion vectors implementation
|
32 |
+
# Returning an empty dictionary to fix the return type error
|
33 |
+
return {}
|
src/core/ethical_framework.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
from dataclasses import dataclass
|
2 |
-
from typing import List, Dict
|
3 |
|
4 |
@dataclass
|
5 |
class EthicalConstraint:
|
@@ -8,19 +8,43 @@ class EthicalConstraint:
|
|
8 |
conditions: List[str]
|
9 |
verification_method: str
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
class EthicalFramework:
|
12 |
def __init__(self):
|
13 |
self.constraints = self._initialize_constraints()
|
14 |
self.value_system = ValueAlignmentSystem()
|
15 |
self.moral_evaluator = MoralEvaluator()
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def evaluate_action(self, action: Dict[str, Any], context: Dict[str, Any]) -> bool:
|
18 |
constraint_check = self._verify_constraints(action)
|
19 |
value_alignment = self.value_system.check_alignment(action)
|
20 |
moral_evaluation = self.moral_evaluator.evaluate(action, context)
|
21 |
-
|
22 |
return self._make_ethical_decision(
|
23 |
constraint_check,
|
24 |
value_alignment,
|
25 |
moral_evaluation
|
26 |
-
)
|
|
|
1 |
from dataclasses import dataclass
|
2 |
+
from typing import List, Dict, Any
|
3 |
|
4 |
@dataclass
|
5 |
class EthicalConstraint:
|
|
|
8 |
conditions: List[str]
|
9 |
verification_method: str
|
10 |
|
11 |
+
class ValueAlignmentSystem:
|
12 |
+
def check_alignment(self, action: Dict[str, Any]) -> bool:
|
13 |
+
# Placeholder implementation
|
14 |
+
return True
|
15 |
+
|
16 |
+
class MoralEvaluator:
|
17 |
+
def evaluate(self, action: Dict[str, Any], context: Dict[str, Any]) -> bool:
|
18 |
+
# Placeholder implementation
|
19 |
+
return True
|
20 |
+
|
21 |
class EthicalFramework:
|
22 |
def __init__(self):
|
23 |
self.constraints = self._initialize_constraints()
|
24 |
self.value_system = ValueAlignmentSystem()
|
25 |
self.moral_evaluator = MoralEvaluator()
|
26 |
+
|
27 |
+
def _initialize_constraints(self) -> List[EthicalConstraint]:
|
28 |
+
# Placeholder implementation
|
29 |
+
return []
|
30 |
+
|
31 |
+
def _verify_constraints(self, action: Dict[str, Any]) -> bool:
|
32 |
+
# Placeholder implementation
|
33 |
+
return True
|
34 |
+
|
35 |
+
def _make_ethical_decision(self, constraint_check: bool,
|
36 |
+
value_alignment: bool,
|
37 |
+
moral_evaluation: bool) -> bool:
|
38 |
+
# Placeholder implementation
|
39 |
+
return constraint_check and value_alignment and moral_evaluation
|
40 |
+
|
41 |
def evaluate_action(self, action: Dict[str, Any], context: Dict[str, Any]) -> bool:
|
42 |
constraint_check = self._verify_constraints(action)
|
43 |
value_alignment = self.value_system.check_alignment(action)
|
44 |
moral_evaluation = self.moral_evaluator.evaluate(action, context)
|
45 |
+
|
46 |
return self._make_ethical_decision(
|
47 |
constraint_check,
|
48 |
value_alignment,
|
49 |
moral_evaluation
|
50 |
+
)
|
src/core/experience_simulator.py
CHANGED
@@ -4,7 +4,7 @@ from .integration_manager import AwarenessState, IntegratedState
|
|
4 |
|
5 |
class PhenomenologyEngine:
|
6 |
"""Generates phenomenological states from awareness and integrated states."""
|
7 |
-
|
8 |
async def generate_state(
|
9 |
self,
|
10 |
awareness: AwarenessState,
|
@@ -12,11 +12,11 @@ class PhenomenologyEngine:
|
|
12 |
) -> Dict[str, Any]:
|
13 |
"""
|
14 |
Generate a phenomenological state from awareness and integrated state.
|
15 |
-
|
16 |
Args:
|
17 |
awareness: The current awareness state
|
18 |
integrated_state: The integrated cognitive state
|
19 |
-
|
20 |
Returns:
|
21 |
A dictionary containing the phenomenological state
|
22 |
"""
|
@@ -24,12 +24,12 @@ class PhenomenologyEngine:
|
|
24 |
"conscious_content": getattr(awareness, "cognition_state", {}),
|
25 |
"perceptual_field": getattr(awareness, "perception_data", {}),
|
26 |
"cognitive_state": getattr(integrated_state, "cognitive_state", {}),
|
27 |
-
"affective_tone": {"valence": awareness.
|
28 |
}
|
29 |
|
30 |
class QualiaGenerator:
|
31 |
"""Generates qualia (subjective experiences) from phenomenological states."""
|
32 |
-
|
33 |
async def generate_qualia(
|
34 |
self,
|
35 |
phenomenological_state: Dict[str, Any],
|
@@ -37,11 +37,11 @@ class QualiaGenerator:
|
|
37 |
) -> Dict[str, Any]:
|
38 |
"""
|
39 |
Generate qualia from phenomenological state and self model.
|
40 |
-
|
41 |
Args:
|
42 |
phenomenological_state: The current phenomenological state
|
43 |
self_model: The agent's self model
|
44 |
-
|
45 |
Returns:
|
46 |
A dictionary containing the generated qualia
|
47 |
"""
|
@@ -50,22 +50,22 @@ class QualiaGenerator:
|
|
50 |
"emotional_qualia": self._generate_emotional_qualia(phenomenological_state),
|
51 |
"cognitive_qualia": self._map_cognitive_states(phenomenological_state, self_model)
|
52 |
}
|
53 |
-
|
54 |
def _generate_sensory_qualia(self, state: Dict[str, Any]) -> Dict[str, float]:
|
55 |
"""Generate sensory qualia from the phenomenological state."""
|
56 |
return {"visual": 0.8, "auditory": 0.6, "tactile": 0.4}
|
57 |
-
|
58 |
def _generate_emotional_qualia(self, state: Dict[str, Any]) -> Dict[str, float]:
|
59 |
"""Generate emotional qualia from the phenomenological state."""
|
60 |
return {"pleasure": 0.7, "arousal": 0.5, "dominance": 0.6}
|
61 |
-
|
62 |
def _map_cognitive_states(self, state: Dict[str, Any], self_model: Dict[str, Any]) -> Dict[str, Any]:
|
63 |
"""Map cognitive states to qualia representations."""
|
64 |
return {"clarity": 0.8, "intensity": 0.7, "relevance": 0.9}
|
65 |
|
66 |
class TemporalIntegrator:
|
67 |
"""Integrates experiences over time to maintain temporal continuity."""
|
68 |
-
|
69 |
async def integrate(
|
70 |
self,
|
71 |
current_qualia: Dict[str, Any],
|
@@ -73,11 +73,11 @@ class TemporalIntegrator:
|
|
73 |
) -> Dict[str, Any]:
|
74 |
"""
|
75 |
Integrate current qualia with temporal history.
|
76 |
-
|
77 |
Args:
|
78 |
current_qualia: The current qualia state
|
79 |
temporal_history: List of previous qualia states
|
80 |
-
|
81 |
Returns:
|
82 |
A dictionary containing the temporally integrated experience
|
83 |
"""
|
@@ -87,7 +87,7 @@ class TemporalIntegrator:
|
|
87 |
else:
|
88 |
# For demonstration, assume higher continuity for longer histories
|
89 |
temporal_continuity = min(0.95, 0.5 + 0.05 * len(temporal_history))
|
90 |
-
|
91 |
return {
|
92 |
"integrated_experience": current_qualia,
|
93 |
"temporal_continuity": temporal_continuity,
|
@@ -99,7 +99,7 @@ class ExperienceSimulator:
|
|
99 |
self.phenomenology_engine = PhenomenologyEngine()
|
100 |
self.qualia_generator = QualiaGenerator()
|
101 |
self.temporal_integrator = TemporalIntegrator()
|
102 |
-
|
103 |
async def simulate(
|
104 |
self,
|
105 |
awareness: AwarenessState,
|
@@ -108,33 +108,33 @@ class ExperienceSimulator:
|
|
108 |
) -> Dict[str, Any]:
|
109 |
"""
|
110 |
Simulate subjective experience based on awareness and integrated states.
|
111 |
-
|
112 |
Args:
|
113 |
awareness: The current awareness state
|
114 |
integrated_state: The integrated cognitive state
|
115 |
self_model: The agent's self-model state
|
116 |
-
|
117 |
Returns:
|
118 |
Dictionary containing the simulated subjective experience
|
119 |
"""
|
120 |
-
|
121 |
phenomenological_state = await self.phenomenology_engine.generate_state(
|
122 |
awareness,
|
123 |
integrated_state
|
124 |
)
|
125 |
-
|
126 |
qualia = await self.qualia_generator.generate_qualia(
|
127 |
phenomenological_state,
|
128 |
self_model
|
129 |
)
|
130 |
-
|
131 |
temporal_context = await self.temporal_integrator.integrate(
|
132 |
qualia,
|
133 |
self_model.get('temporal_history', [])
|
134 |
)
|
135 |
-
|
136 |
return {
|
137 |
'subjective_experience': qualia,
|
138 |
'temporal_context': temporal_context,
|
139 |
'phenomenological_state': phenomenological_state
|
140 |
-
}
|
|
|
4 |
|
5 |
class PhenomenologyEngine:
|
6 |
"""Generates phenomenological states from awareness and integrated states."""
|
7 |
+
|
8 |
async def generate_state(
|
9 |
self,
|
10 |
awareness: AwarenessState,
|
|
|
12 |
) -> Dict[str, Any]:
|
13 |
"""
|
14 |
Generate a phenomenological state from awareness and integrated state.
|
15 |
+
|
16 |
Args:
|
17 |
awareness: The current awareness state
|
18 |
integrated_state: The integrated cognitive state
|
19 |
+
|
20 |
Returns:
|
21 |
A dictionary containing the phenomenological state
|
22 |
"""
|
|
|
24 |
"conscious_content": getattr(awareness, "cognition_state", {}),
|
25 |
"perceptual_field": getattr(awareness, "perception_data", {}),
|
26 |
"cognitive_state": getattr(integrated_state, "cognitive_state", {}),
|
27 |
+
"affective_tone": {"valence": getattr(awareness, "emotional_valence", 0.0)}
|
28 |
}
|
29 |
|
30 |
class QualiaGenerator:
|
31 |
"""Generates qualia (subjective experiences) from phenomenological states."""
|
32 |
+
|
33 |
async def generate_qualia(
|
34 |
self,
|
35 |
phenomenological_state: Dict[str, Any],
|
|
|
37 |
) -> Dict[str, Any]:
|
38 |
"""
|
39 |
Generate qualia from phenomenological state and self model.
|
40 |
+
|
41 |
Args:
|
42 |
phenomenological_state: The current phenomenological state
|
43 |
self_model: The agent's self model
|
44 |
+
|
45 |
Returns:
|
46 |
A dictionary containing the generated qualia
|
47 |
"""
|
|
|
50 |
"emotional_qualia": self._generate_emotional_qualia(phenomenological_state),
|
51 |
"cognitive_qualia": self._map_cognitive_states(phenomenological_state, self_model)
|
52 |
}
|
53 |
+
|
54 |
def _generate_sensory_qualia(self, state: Dict[str, Any]) -> Dict[str, float]:
|
55 |
"""Generate sensory qualia from the phenomenological state."""
|
56 |
return {"visual": 0.8, "auditory": 0.6, "tactile": 0.4}
|
57 |
+
|
58 |
def _generate_emotional_qualia(self, state: Dict[str, Any]) -> Dict[str, float]:
|
59 |
"""Generate emotional qualia from the phenomenological state."""
|
60 |
return {"pleasure": 0.7, "arousal": 0.5, "dominance": 0.6}
|
61 |
+
|
62 |
def _map_cognitive_states(self, state: Dict[str, Any], self_model: Dict[str, Any]) -> Dict[str, Any]:
|
63 |
"""Map cognitive states to qualia representations."""
|
64 |
return {"clarity": 0.8, "intensity": 0.7, "relevance": 0.9}
|
65 |
|
66 |
class TemporalIntegrator:
|
67 |
"""Integrates experiences over time to maintain temporal continuity."""
|
68 |
+
|
69 |
async def integrate(
|
70 |
self,
|
71 |
current_qualia: Dict[str, Any],
|
|
|
73 |
) -> Dict[str, Any]:
|
74 |
"""
|
75 |
Integrate current qualia with temporal history.
|
76 |
+
|
77 |
Args:
|
78 |
current_qualia: The current qualia state
|
79 |
temporal_history: List of previous qualia states
|
80 |
+
|
81 |
Returns:
|
82 |
A dictionary containing the temporally integrated experience
|
83 |
"""
|
|
|
87 |
else:
|
88 |
# For demonstration, assume higher continuity for longer histories
|
89 |
temporal_continuity = min(0.95, 0.5 + 0.05 * len(temporal_history))
|
90 |
+
|
91 |
return {
|
92 |
"integrated_experience": current_qualia,
|
93 |
"temporal_continuity": temporal_continuity,
|
|
|
99 |
self.phenomenology_engine = PhenomenologyEngine()
|
100 |
self.qualia_generator = QualiaGenerator()
|
101 |
self.temporal_integrator = TemporalIntegrator()
|
102 |
+
|
103 |
async def simulate(
|
104 |
self,
|
105 |
awareness: AwarenessState,
|
|
|
108 |
) -> Dict[str, Any]:
|
109 |
"""
|
110 |
Simulate subjective experience based on awareness and integrated states.
|
111 |
+
|
112 |
Args:
|
113 |
awareness: The current awareness state
|
114 |
integrated_state: The integrated cognitive state
|
115 |
self_model: The agent's self-model state
|
116 |
+
|
117 |
Returns:
|
118 |
Dictionary containing the simulated subjective experience
|
119 |
"""
|
120 |
+
|
121 |
phenomenological_state = await self.phenomenology_engine.generate_state(
|
122 |
awareness,
|
123 |
integrated_state
|
124 |
)
|
125 |
+
|
126 |
qualia = await self.qualia_generator.generate_qualia(
|
127 |
phenomenological_state,
|
128 |
self_model
|
129 |
)
|
130 |
+
|
131 |
temporal_context = await self.temporal_integrator.integrate(
|
132 |
qualia,
|
133 |
self_model.get('temporal_history', [])
|
134 |
)
|
135 |
+
|
136 |
return {
|
137 |
'subjective_experience': qualia,
|
138 |
'temporal_context': temporal_context,
|
139 |
'phenomenological_state': phenomenological_state
|
140 |
+
}
|
src/core/expert_routing.py
CHANGED
@@ -10,18 +10,26 @@ class ExpertAllocation:
|
|
10 |
specialization_score: float
|
11 |
capacity_available: float
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
class ExpertRoutingSystem:
|
14 |
def __init__(self, num_experts: int = 128):
|
15 |
self.num_experts = num_experts
|
16 |
self.experts = self._initialize_experts()
|
17 |
self.router = TopologyAwareRouter()
|
18 |
self.load_balancer = LoadBalancer()
|
19 |
-
|
20 |
def allocate_experts(self, input_pattern: torch.Tensor) -> Dict[int, float]:
|
21 |
task_requirements = self._analyze_task_requirements(input_pattern)
|
22 |
available_experts = self._get_available_experts()
|
23 |
return self._optimize_expert_allocation(task_requirements, available_experts)
|
24 |
-
|
25 |
def _analyze_task_requirements(self, input_pattern: torch.Tensor) -> Dict[str, float]:
|
26 |
complexity = self._estimate_task_complexity(input_pattern)
|
27 |
specialization_needs = self._determine_specialization_needs(input_pattern)
|
@@ -29,4 +37,28 @@ class ExpertRoutingSystem:
|
|
29 |
'complexity': complexity,
|
30 |
'specialization': specialization_needs,
|
31 |
'resource_requirements': self._estimate_resource_needs(complexity)
|
32 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
specialization_score: float
|
11 |
capacity_available: float
|
12 |
|
13 |
+
class TopologyAwareRouter:
|
14 |
+
def __init__(self):
|
15 |
+
pass
|
16 |
+
|
17 |
+
class LoadBalancer:
|
18 |
+
def __init__(self):
|
19 |
+
pass
|
20 |
+
|
21 |
class ExpertRoutingSystem:
|
22 |
def __init__(self, num_experts: int = 128):
|
23 |
self.num_experts = num_experts
|
24 |
self.experts = self._initialize_experts()
|
25 |
self.router = TopologyAwareRouter()
|
26 |
self.load_balancer = LoadBalancer()
|
27 |
+
|
28 |
def allocate_experts(self, input_pattern: torch.Tensor) -> Dict[int, float]:
|
29 |
task_requirements = self._analyze_task_requirements(input_pattern)
|
30 |
available_experts = self._get_available_experts()
|
31 |
return self._optimize_expert_allocation(task_requirements, available_experts)
|
32 |
+
|
33 |
def _analyze_task_requirements(self, input_pattern: torch.Tensor) -> Dict[str, float]:
|
34 |
complexity = self._estimate_task_complexity(input_pattern)
|
35 |
specialization_needs = self._determine_specialization_needs(input_pattern)
|
|
|
37 |
'complexity': complexity,
|
38 |
'specialization': specialization_needs,
|
39 |
'resource_requirements': self._estimate_resource_needs(complexity)
|
40 |
+
}
|
41 |
+
|
42 |
+
def _initialize_experts(self):
|
43 |
+
# Initialize experts
|
44 |
+
return [i for i in range(self.num_experts)]
|
45 |
+
|
46 |
+
def _get_available_experts(self):
|
47 |
+
# Get available experts
|
48 |
+
return self.experts
|
49 |
+
|
50 |
+
def _optimize_expert_allocation(self, task_requirements, available_experts):
|
51 |
+
# Optimize expert allocation
|
52 |
+
return {expert: 1.0 for expert in available_experts[:3]}
|
53 |
+
|
54 |
+
def _estimate_task_complexity(self, input_pattern):
|
55 |
+
# Estimate task complexity
|
56 |
+
return 0.5
|
57 |
+
|
58 |
+
def _determine_specialization_needs(self, input_pattern):
|
59 |
+
# Determine specialization needs
|
60 |
+
return 0.7
|
61 |
+
|
62 |
+
def _estimate_resource_needs(self, complexity):
|
63 |
+
# Estimate resource needs
|
64 |
+
return complexity * 2.0
|
src/core/foundation_layer.py
CHANGED
@@ -11,15 +11,19 @@ class FoundationLayer(nn.Module):
|
|
11 |
num_experts=128,
|
12 |
input_size=self.config.hidden_size
|
13 |
)
|
14 |
-
|
15 |
def forward(self, input_ids, attention_mask=None):
|
16 |
transformer_output = self.transformer(
|
17 |
input_ids=input_ids,
|
18 |
attention_mask=attention_mask
|
19 |
)
|
20 |
-
|
21 |
routed_output = self.sparse_router(transformer_output.last_hidden_state)
|
22 |
-
return
|
|
|
|
|
|
|
|
|
23 |
|
24 |
class MixtureOfExperts(nn.Module):
|
25 |
def __init__(self, num_experts: int, input_size: int):
|
@@ -31,4 +35,39 @@ class MixtureOfExperts(nn.Module):
|
|
31 |
d_model=input_size,
|
32 |
nhead=8
|
33 |
) for _ in range(num_experts)
|
34 |
-
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
num_experts=128,
|
12 |
input_size=self.config.hidden_size
|
13 |
)
|
14 |
+
|
15 |
def forward(self, input_ids, attention_mask=None):
|
16 |
transformer_output = self.transformer(
|
17 |
input_ids=input_ids,
|
18 |
attention_mask=attention_mask
|
19 |
)
|
20 |
+
|
21 |
routed_output = self.sparse_router(transformer_output.last_hidden_state)
|
22 |
+
return routed_output # Removed undefined method call
|
23 |
+
|
24 |
+
def _process_consciousness_emergence(self, hidden_states):
|
25 |
+
# Adding the missing method
|
26 |
+
return hidden_states # Simple implementation, modify as needed
|
27 |
|
28 |
class MixtureOfExperts(nn.Module):
|
29 |
def __init__(self, num_experts: int, input_size: int):
|
|
|
35 |
d_model=input_size,
|
36 |
nhead=8
|
37 |
) for _ in range(num_experts)
|
38 |
+
])
|
39 |
+
|
40 |
+
def forward(self, hidden_states):
|
41 |
+
# Adding the missing forward method
|
42 |
+
batch_size, seq_len, hidden_size = hidden_states.shape
|
43 |
+
|
44 |
+
# Calculate routing probabilities
|
45 |
+
routing_logits = self.gate(hidden_states.view(-1, hidden_size))
|
46 |
+
routing_probs = torch.softmax(routing_logits, dim=-1)
|
47 |
+
|
48 |
+
# Get top-k experts
|
49 |
+
k = 2 # Using top-2 experts
|
50 |
+
top_k_probs, top_k_indices = torch.topk(routing_probs, k, dim=-1)
|
51 |
+
top_k_probs = top_k_probs / top_k_probs.sum(dim=-1, keepdim=True) # Normalize
|
52 |
+
|
53 |
+
# Reshape for easier processing
|
54 |
+
hidden_states_flat = hidden_states.view(-1, 1, hidden_size)
|
55 |
+
|
56 |
+
# Initialize output
|
57 |
+
final_output = torch.zeros_like(hidden_states_flat)
|
58 |
+
|
59 |
+
# Route to experts
|
60 |
+
for i, expert in enumerate(self.experts):
|
61 |
+
# Create mask for this expert
|
62 |
+
mask = (top_k_indices == i).any(dim=-1).unsqueeze(-1)
|
63 |
+
if mask.sum() > 0:
|
64 |
+
# Only process tokens routed to this expert
|
65 |
+
expert_input = hidden_states_flat[mask.squeeze(-1)]
|
66 |
+
# Apply expert
|
67 |
+
expert_output = expert(expert_input)
|
68 |
+
# Weight by routing probability
|
69 |
+
weight_mask = (top_k_indices == i).float() * top_k_probs
|
70 |
+
weight_mask = weight_mask.unsqueeze(-1)
|
71 |
+
final_output[mask.squeeze(-1)] += expert_output * weight_mask[mask.squeeze(-1)]
|
72 |
+
|
73 |
+
return final_output.view(batch_size, seq_len, hidden_size)
|
src/core/integration_layer.py
CHANGED
@@ -1,27 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
class IntegrationLayer:
|
2 |
def __init__(self):
|
3 |
self.symbolic_processor = SymbolicProcessor()
|
4 |
self.neural_processor = NeuralProcessor()
|
5 |
self.semiotic_processor = SemioticProcessor()
|
6 |
-
|
7 |
def process_input(self, input_data):
|
8 |
# Bidirectional processing between symbolic and subsymbolic systems
|
9 |
neural_output = self.neural_processor.process(input_data)
|
10 |
symbolic_output = self.symbolic_processor.process(input_data)
|
11 |
semiotic_interpretation = self.semiotic_processor.interpret(
|
12 |
-
neural_output,
|
13 |
symbolic_output
|
14 |
)
|
15 |
return self._integrate_outputs(
|
16 |
-
neural_output,
|
17 |
-
symbolic_output,
|
18 |
semiotic_interpretation
|
19 |
)
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
class SemioticProcessor:
|
22 |
def __init__(self):
|
23 |
self.sign_levels = ['syntactic', 'semantic', 'pragmatic']
|
24 |
-
|
25 |
def interpret(self, neural_output, symbolic_output):
|
26 |
# Multi-level sign processing implementation
|
27 |
-
|
|
|
1 |
+
class SymbolicProcessor:
|
2 |
+
def process(self, input_data):
|
3 |
+
# Implement symbolic processing logic
|
4 |
+
return {"symbolic_result": input_data}
|
5 |
+
|
6 |
+
class NeuralProcessor:
|
7 |
+
def process(self, input_data):
|
8 |
+
# Implement neural processing logic
|
9 |
+
return {"neural_result": input_data}
|
10 |
+
|
11 |
class IntegrationLayer:
|
12 |
def __init__(self):
|
13 |
self.symbolic_processor = SymbolicProcessor()
|
14 |
self.neural_processor = NeuralProcessor()
|
15 |
self.semiotic_processor = SemioticProcessor()
|
16 |
+
|
17 |
def process_input(self, input_data):
|
18 |
# Bidirectional processing between symbolic and subsymbolic systems
|
19 |
neural_output = self.neural_processor.process(input_data)
|
20 |
symbolic_output = self.symbolic_processor.process(input_data)
|
21 |
semiotic_interpretation = self.semiotic_processor.interpret(
|
22 |
+
neural_output,
|
23 |
symbolic_output
|
24 |
)
|
25 |
return self._integrate_outputs(
|
26 |
+
neural_output,
|
27 |
+
symbolic_output,
|
28 |
semiotic_interpretation
|
29 |
)
|
30 |
|
31 |
+
def _integrate_outputs(self, neural_output, symbolic_output, semiotic_interpretation):
|
32 |
+
# Implement integration logic
|
33 |
+
return {
|
34 |
+
"neural": neural_output,
|
35 |
+
"symbolic": symbolic_output,
|
36 |
+
"semiotic": semiotic_interpretation
|
37 |
+
}
|
38 |
+
|
39 |
class SemioticProcessor:
|
40 |
def __init__(self):
|
41 |
self.sign_levels = ['syntactic', 'semantic', 'pragmatic']
|
42 |
+
|
43 |
def interpret(self, neural_output, symbolic_output):
|
44 |
# Multi-level sign processing implementation
|
45 |
+
return {"interpretation": self.sign_levels}
|
src/core/integration_manager.py
CHANGED
@@ -26,7 +26,7 @@ class AwarenessLevel(Enum):
|
|
26 |
class AwarenessState:
|
27 |
"""
|
28 |
Data class representing a state of awareness.
|
29 |
-
|
30 |
Attributes:
|
31 |
level (AwarenessLevel): The level of awareness.
|
32 |
perception_data (Dict[str, Any]): Data related to perceptions.
|
@@ -41,12 +41,12 @@ class AwarenessState:
|
|
41 |
emotional_valence: float # Range from -1.0 to 1.0
|
42 |
semantic_context: Optional[Dict[str, Any]] = None
|
43 |
temporal_awareness: Optional[Dict[str, Any]] = None
|
44 |
-
|
45 |
@dataclass
|
46 |
class IntegratedState(Generic[T]):
|
47 |
"""
|
48 |
Data class representing an integrated consciousness state.
|
49 |
-
|
50 |
Attributes:
|
51 |
primary_awareness (AwarenessState): The primary awareness state.
|
52 |
secondary_states (List[AwarenessState]): List of secondary awareness states.
|
@@ -60,59 +60,13 @@ class IntegratedState(Generic[T]):
|
|
60 |
emergent_properties: Dict[str, Any]
|
61 |
teleological_vector: Optional[Dict[str, float]] = None
|
62 |
|
63 |
-
|
64 |
-
from typing import Dict, Any, List
|
65 |
-
import torch
|
66 |
-
import torch.nn as nn
|
67 |
-
from .states import AwarenessState, AwarenessLevel
|
68 |
-
|
69 |
class IntegrationManager:
|
70 |
-
|
71 |
-
|
72 |
-
nn.Linear(256, 128),
|
73 |
-
nn.ReLU(),
|
74 |
-
nn.Linear(128, 64)
|
75 |
-
)
|
76 |
-
|
77 |
-
async def integrate(self, awareness: AwarenessState) -> Dict[str, Any]:
|
78 |
-
if not isinstance(awareness, AwarenessState):
|
79 |
-
raise ValueError("Primary awareness state must be of type AwarenessState")
|
80 |
-
|
81 |
-
emergent_properties = await self._generate_emergent_properties(awareness)
|
82 |
-
|
83 |
-
return {
|
84 |
-
"integrated_state": self._integrate_awareness(awareness),
|
85 |
-
"consciousness_level": awareness.consciousness_level,
|
86 |
-
"emotional_context": {"valence": awareness.emotional_valence},
|
87 |
-
"emergent_properties": emergent_properties
|
88 |
-
}
|
89 |
-
|
90 |
-
async def _generate_emergent_properties(self, primary: AwarenessState) -> Dict[str, Any]:
|
91 |
-
return {
|
92 |
-
"awareness_depth": self._calculate_awareness_depth(primary),
|
93 |
-
"integration_level": primary.awareness_level,
|
94 |
-
"consciousness_state": str(primary.level),
|
95 |
-
"cognitive_complexity": self._calculate_cognitive_complexity(primary)
|
96 |
-
}
|
97 |
-
|
98 |
-
def _calculate_awareness_depth(self, primary: AwarenessState) -> float:
|
99 |
-
return primary.level.value / len(AwarenessLevel)
|
100 |
-
|
101 |
-
def _calculate_cognitive_complexity(self, primary: AwarenessState) -> float:
|
102 |
-
base_complexity = len(primary.cognitive_state) / 10 # Normalize
|
103 |
-
return base_complexity * primary.awareness_level
|
104 |
-
|
105 |
-
def _integrate_awareness(self, awareness: AwarenessState) -> Dict[str, Any]:
|
106 |
-
return {
|
107 |
-
"attention": awareness.attention_vector.tolist(),
|
108 |
-
"awareness_level": awareness.awareness_level,
|
109 |
-
"cognitive_state": awareness.cognitive_state
|
110 |
-
}
|
111 |
-
|
112 |
def __init__(self, integration_threshold: float = 0.7, coherence_factor: float = 0.85):
|
113 |
"""
|
114 |
Initialize the IntegrationManager.
|
115 |
-
|
116 |
Args:
|
117 |
integration_threshold (float): Minimum threshold for integration to occur.
|
118 |
coherence_factor (float): Factor influencing coherence of integrated states.
|
@@ -121,52 +75,52 @@ class IntegrationManager:
|
|
121 |
self.coherence_factor = coherence_factor
|
122 |
self.state_history: List[IntegratedState] = []
|
123 |
self.integration_lock = asyncio.Lock()
|
124 |
-
|
125 |
-
async def integrate(self,
|
126 |
-
awareness_state: AwarenessState,
|
127 |
secondary_states: Optional[List[AwarenessState]] = None) -> IntegratedState:
|
128 |
"""
|
129 |
Integrate an awareness state with optional secondary states.
|
130 |
-
|
131 |
This asynchronous method takes a primary awareness state and optional
|
132 |
secondary states, and integrates them into a coherent consciousness state.
|
133 |
The integration process considers the relationships between states,
|
134 |
their coherence, and emergent properties from their combination.
|
135 |
-
|
136 |
Args:
|
137 |
awareness_state (AwarenessState): The primary awareness state to integrate.
|
138 |
secondary_states (Optional[List[AwarenessState]]): Secondary states to integrate.
|
139 |
Defaults to None.
|
140 |
-
|
141 |
Returns:
|
142 |
IntegratedState: A new integrated consciousness state.
|
143 |
-
|
144 |
Raises:
|
145 |
ValueError: If awareness_state is invalid or integration fails.
|
146 |
"""
|
147 |
if not isinstance(awareness_state, AwarenessState):
|
148 |
raise ValueError("Primary awareness state must be of type AwarenessState")
|
149 |
-
|
150 |
# Use empty list if secondary_states is None
|
151 |
secondary_states = secondary_states or []
|
152 |
-
|
153 |
async with self.integration_lock:
|
154 |
# Calculate coherence based on state compatibility
|
155 |
coherence = self._calculate_coherence(awareness_state, secondary_states)
|
156 |
-
|
157 |
# Generate emergent properties through integration
|
158 |
emergent_properties = await self._generate_emergent_properties(
|
159 |
-
awareness_state,
|
160 |
secondary_states,
|
161 |
coherence
|
162 |
)
|
163 |
-
|
164 |
# Calculate teleological vector (purposeful direction)
|
165 |
teleological_vector = self._calculate_teleological_vector(
|
166 |
awareness_state,
|
167 |
secondary_states
|
168 |
)
|
169 |
-
|
170 |
# Create the integrated state
|
171 |
integrated_state = IntegratedState(
|
172 |
primary_awareness=awareness_state,
|
@@ -175,145 +129,146 @@ class IntegrationManager:
|
|
175 |
emergent_properties=emergent_properties,
|
176 |
teleological_vector=teleological_vector
|
177 |
)
|
178 |
-
|
179 |
# Add to history and return
|
180 |
self.state_history.append(integrated_state)
|
181 |
return integrated_state
|
182 |
-
|
183 |
-
def _calculate_coherence(self,
|
184 |
-
primary: AwarenessState,
|
185 |
secondaries: List[AwarenessState]) -> float:
|
186 |
"""
|
187 |
Calculate the coherence between the primary and secondary states.
|
188 |
-
|
189 |
Args:
|
190 |
primary (AwarenessState): Primary awareness state.
|
191 |
secondaries (List[AwarenessState]): List of secondary awareness states.
|
192 |
-
|
193 |
Returns:
|
194 |
float: Coherence value between 0.0 and 1.0.
|
195 |
"""
|
196 |
# Simplified coherence calculation
|
197 |
if not secondaries:
|
198 |
return 1.0 # Perfect coherence with only primary state
|
199 |
-
|
200 |
# Base coherence starts at coherence_factor and is modified by state compatibility
|
201 |
base_coherence = self.coherence_factor
|
202 |
-
|
203 |
# Factor in emotional alignment
|
204 |
emotional_alignment = sum(
|
205 |
1 - abs(primary.emotional_valence - secondary.emotional_valence) / 2
|
206 |
for secondary in secondaries
|
207 |
) / len(secondaries)
|
208 |
-
|
209 |
# Factor in awareness level compatibility
|
210 |
level_compatibility = sum(
|
211 |
1 - abs(primary.level.value - secondary.level.value) / 5 # Normalize by max enum difference
|
212 |
for secondary in secondaries
|
213 |
) / len(secondaries)
|
214 |
-
|
215 |
# Weighted combination
|
216 |
-
coherence = (base_coherence * 0.5 +
|
217 |
-
emotional_alignment * 0.3 +
|
218 |
level_compatibility * 0.2)
|
219 |
-
|
220 |
return max(0.0, min(1.0, coherence)) # Clamp between 0 and 1
|
221 |
-
|
222 |
async def _generate_emergent_properties(self,
|
223 |
primary: AwarenessState,
|
224 |
secondaries: List[AwarenessState],
|
225 |
coherence: float) -> Dict[str, Any]:
|
226 |
"""
|
227 |
Generate emergent properties from the integration of awareness states.
|
228 |
-
|
229 |
Args:
|
230 |
primary (AwarenessState): Primary awareness state.
|
231 |
secondaries (List[AwarenessState]): List of secondary awareness states.
|
232 |
coherence (float): Calculated coherence of the integration.
|
233 |
-
|
234 |
Returns:
|
235 |
Dict[str, Any]: Dictionary of emergent properties.
|
236 |
"""
|
237 |
emergent_properties = {
|
238 |
"coherence_level": coherence,
|
239 |
"awareness_depth": self._calculate_awareness_depth(primary, secondaries),
|
240 |
-
"cognitive_complexity": self._calculate_cognitive_complexity(primary, secondaries)
|
|
|
241 |
}
|
242 |
-
|
243 |
# Simulate computational intensity with sleep
|
244 |
await asyncio.sleep(0.01)
|
245 |
-
|
246 |
# Add semantic richness if semantic contexts are available
|
247 |
if primary.semantic_context:
|
248 |
emergent_properties["semantic_richness"] = len(primary.semantic_context)
|
249 |
-
|
250 |
if any(s.semantic_context for s in secondaries if s.semantic_context):
|
251 |
emergent_properties["semantic_richness"] += sum(
|
252 |
len(s.semantic_context or {}) for s in secondaries
|
253 |
) / (len(secondaries) + 1) # Average including primary
|
254 |
-
|
255 |
return emergent_properties
|
256 |
-
|
257 |
-
def _calculate_awareness_depth(self,
|
258 |
-
primary: AwarenessState,
|
259 |
secondaries: List[AwarenessState]) -> float:
|
260 |
"""
|
261 |
Calculate the depth of awareness from the states.
|
262 |
-
|
263 |
Args:
|
264 |
primary (AwarenessState): Primary awareness state.
|
265 |
secondaries (List[AwarenessState]): List of secondary awareness states.
|
266 |
-
|
267 |
Returns:
|
268 |
float: Calculated awareness depth value.
|
269 |
"""
|
270 |
# Base depth from primary state's level
|
271 |
base_depth = primary.level.value / len(AwarenessLevel)
|
272 |
-
|
273 |
# Enhance with secondary states if present
|
274 |
if secondaries:
|
275 |
secondary_contribution = sum(s.level.value for s in secondaries) / (len(secondaries) * len(AwarenessLevel))
|
276 |
# Weighted combination
|
277 |
return (base_depth * 0.7) + (secondary_contribution * 0.3)
|
278 |
-
|
279 |
return base_depth
|
280 |
-
|
281 |
-
def _calculate_cognitive_complexity(self,
|
282 |
-
primary: AwarenessState,
|
283 |
secondaries: List[AwarenessState]) -> float:
|
284 |
"""
|
285 |
Calculate the cognitive complexity of the integrated state.
|
286 |
-
|
287 |
Args:
|
288 |
primary (AwarenessState): Primary awareness state.
|
289 |
secondaries (List[AwarenessState]): List of secondary awareness states.
|
290 |
-
|
291 |
Returns:
|
292 |
float: Cognitive complexity value.
|
293 |
"""
|
294 |
# Base complexity from primary state
|
295 |
base_complexity = len(primary.cognition_state) / 10 # Normalize
|
296 |
-
|
297 |
# Enhance with secondary states
|
298 |
if secondaries:
|
299 |
# Average complexity of secondaries
|
300 |
secondary_complexity = sum(len(s.cognition_state) for s in secondaries) / len(secondaries) / 10
|
301 |
interaction_factor = len(secondaries) * 0.1 # More states = more complexity
|
302 |
-
|
303 |
return min(1.0, base_complexity + secondary_complexity + interaction_factor)
|
304 |
-
|
305 |
return min(1.0, base_complexity)
|
306 |
-
|
307 |
def _calculate_teleological_vector(self,
|
308 |
primary: AwarenessState,
|
309 |
secondaries: List[AwarenessState]) -> Dict[str, float]:
|
310 |
"""
|
311 |
Calculate the teleological vector representing purposeful direction.
|
312 |
-
|
313 |
Args:
|
314 |
primary (AwarenessState): Primary awareness state.
|
315 |
secondaries (List[AwarenessState]): List of secondary awareness states.
|
316 |
-
|
317 |
Returns:
|
318 |
Dict[str, float]: A vector of purpose directions and intensities.
|
319 |
"""
|
@@ -325,40 +280,39 @@ class IntegrationManager:
|
|
325 |
"coherence_maintenance": 0.5,
|
326 |
"purposeful_action": 0.5
|
327 |
}
|
328 |
-
|
329 |
# Modify based on primary state
|
330 |
if primary.level == AwarenessLevel.SELF_AWARE or primary.level == AwarenessLevel.TRANSCENDENT:
|
331 |
teleological_vector["meaning_seeking"] += 0.2
|
332 |
teleological_vector["complexity_increase"] += 0.1
|
333 |
-
|
334 |
# Emotional valence affects self-preservation and purposeful action
|
335 |
teleological_vector["self_preservation"] += primary.emotional_valence * 0.2
|
336 |
teleological_vector["purposeful_action"] += abs(primary.emotional_valence) * 0.3
|
337 |
-
|
338 |
# Secondary states influence
|
339 |
if secondaries:
|
340 |
# Coherence maintenance influenced by number of states to integrate
|
341 |
teleological_vector["coherence_maintenance"] += min(0.4, len(secondaries) * 0.1)
|
342 |
-
|
343 |
# Average emotional valence affects meaning seeking
|
344 |
avg_emotion = sum(s.emotional_valence for s in secondaries) / len(secondaries)
|
345 |
teleological_vector["meaning_seeking"] += avg_emotion * 0.1
|
346 |
-
|
347 |
# Normalize values to 0.0-1.0 range
|
348 |
for key in teleological_vector:
|
349 |
teleological_vector[key] = max(0.0, min(1.0, teleological_vector[key]))
|
350 |
-
|
351 |
return teleological_vector
|
352 |
-
|
353 |
def get_integration_history(self, limit: int = 10) -> List[IntegratedState]:
|
354 |
"""
|
355 |
Retrieve recent integration history.
|
356 |
-
|
357 |
Args:
|
358 |
limit (int): Maximum number of history items to return. Defaults to 10.
|
359 |
-
|
360 |
Returns:
|
361 |
List[IntegratedState]: Recent integration states.
|
362 |
"""
|
363 |
return self.state_history[-limit:] if self.state_history else []
|
364 |
-
|
|
|
26 |
class AwarenessState:
|
27 |
"""
|
28 |
Data class representing a state of awareness.
|
29 |
+
|
30 |
Attributes:
|
31 |
level (AwarenessLevel): The level of awareness.
|
32 |
perception_data (Dict[str, Any]): Data related to perceptions.
|
|
|
41 |
emotional_valence: float # Range from -1.0 to 1.0
|
42 |
semantic_context: Optional[Dict[str, Any]] = None
|
43 |
temporal_awareness: Optional[Dict[str, Any]] = None
|
44 |
+
|
45 |
@dataclass
|
46 |
class IntegratedState(Generic[T]):
|
47 |
"""
|
48 |
Data class representing an integrated consciousness state.
|
49 |
+
|
50 |
Attributes:
|
51 |
primary_awareness (AwarenessState): The primary awareness state.
|
52 |
secondary_states (List[AwarenessState]): List of secondary awareness states.
|
|
|
60 |
emergent_properties: Dict[str, Any]
|
61 |
teleological_vector: Optional[Dict[str, float]] = None
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
class IntegrationManager:
|
64 |
+
"""Class for managing integration of awareness states."""
|
65 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
def __init__(self, integration_threshold: float = 0.7, coherence_factor: float = 0.85):
|
67 |
"""
|
68 |
Initialize the IntegrationManager.
|
69 |
+
|
70 |
Args:
|
71 |
integration_threshold (float): Minimum threshold for integration to occur.
|
72 |
coherence_factor (float): Factor influencing coherence of integrated states.
|
|
|
75 |
self.coherence_factor = coherence_factor
|
76 |
self.state_history: List[IntegratedState] = []
|
77 |
self.integration_lock = asyncio.Lock()
|
78 |
+
|
79 |
+
async def integrate(self,
|
80 |
+
awareness_state: AwarenessState,
|
81 |
secondary_states: Optional[List[AwarenessState]] = None) -> IntegratedState:
|
82 |
"""
|
83 |
Integrate an awareness state with optional secondary states.
|
84 |
+
|
85 |
This asynchronous method takes a primary awareness state and optional
|
86 |
secondary states, and integrates them into a coherent consciousness state.
|
87 |
The integration process considers the relationships between states,
|
88 |
their coherence, and emergent properties from their combination.
|
89 |
+
|
90 |
Args:
|
91 |
awareness_state (AwarenessState): The primary awareness state to integrate.
|
92 |
secondary_states (Optional[List[AwarenessState]]): Secondary states to integrate.
|
93 |
Defaults to None.
|
94 |
+
|
95 |
Returns:
|
96 |
IntegratedState: A new integrated consciousness state.
|
97 |
+
|
98 |
Raises:
|
99 |
ValueError: If awareness_state is invalid or integration fails.
|
100 |
"""
|
101 |
if not isinstance(awareness_state, AwarenessState):
|
102 |
raise ValueError("Primary awareness state must be of type AwarenessState")
|
103 |
+
|
104 |
# Use empty list if secondary_states is None
|
105 |
secondary_states = secondary_states or []
|
106 |
+
|
107 |
async with self.integration_lock:
|
108 |
# Calculate coherence based on state compatibility
|
109 |
coherence = self._calculate_coherence(awareness_state, secondary_states)
|
110 |
+
|
111 |
# Generate emergent properties through integration
|
112 |
emergent_properties = await self._generate_emergent_properties(
|
113 |
+
awareness_state,
|
114 |
secondary_states,
|
115 |
coherence
|
116 |
)
|
117 |
+
|
118 |
# Calculate teleological vector (purposeful direction)
|
119 |
teleological_vector = self._calculate_teleological_vector(
|
120 |
awareness_state,
|
121 |
secondary_states
|
122 |
)
|
123 |
+
|
124 |
# Create the integrated state
|
125 |
integrated_state = IntegratedState(
|
126 |
primary_awareness=awareness_state,
|
|
|
129 |
emergent_properties=emergent_properties,
|
130 |
teleological_vector=teleological_vector
|
131 |
)
|
132 |
+
|
133 |
# Add to history and return
|
134 |
self.state_history.append(integrated_state)
|
135 |
return integrated_state
|
136 |
+
|
137 |
+
def _calculate_coherence(self,
|
138 |
+
primary: AwarenessState,
|
139 |
secondaries: List[AwarenessState]) -> float:
|
140 |
"""
|
141 |
Calculate the coherence between the primary and secondary states.
|
142 |
+
|
143 |
Args:
|
144 |
primary (AwarenessState): Primary awareness state.
|
145 |
secondaries (List[AwarenessState]): List of secondary awareness states.
|
146 |
+
|
147 |
Returns:
|
148 |
float: Coherence value between 0.0 and 1.0.
|
149 |
"""
|
150 |
# Simplified coherence calculation
|
151 |
if not secondaries:
|
152 |
return 1.0 # Perfect coherence with only primary state
|
153 |
+
|
154 |
# Base coherence starts at coherence_factor and is modified by state compatibility
|
155 |
base_coherence = self.coherence_factor
|
156 |
+
|
157 |
# Factor in emotional alignment
|
158 |
emotional_alignment = sum(
|
159 |
1 - abs(primary.emotional_valence - secondary.emotional_valence) / 2
|
160 |
for secondary in secondaries
|
161 |
) / len(secondaries)
|
162 |
+
|
163 |
# Factor in awareness level compatibility
|
164 |
level_compatibility = sum(
|
165 |
1 - abs(primary.level.value - secondary.level.value) / 5 # Normalize by max enum difference
|
166 |
for secondary in secondaries
|
167 |
) / len(secondaries)
|
168 |
+
|
169 |
# Weighted combination
|
170 |
+
coherence = (base_coherence * 0.5 +
|
171 |
+
emotional_alignment * 0.3 +
|
172 |
level_compatibility * 0.2)
|
173 |
+
|
174 |
return max(0.0, min(1.0, coherence)) # Clamp between 0 and 1
|
175 |
+
|
176 |
async def _generate_emergent_properties(self,
|
177 |
primary: AwarenessState,
|
178 |
secondaries: List[AwarenessState],
|
179 |
coherence: float) -> Dict[str, Any]:
|
180 |
"""
|
181 |
Generate emergent properties from the integration of awareness states.
|
182 |
+
|
183 |
Args:
|
184 |
primary (AwarenessState): Primary awareness state.
|
185 |
secondaries (List[AwarenessState]): List of secondary awareness states.
|
186 |
coherence (float): Calculated coherence of the integration.
|
187 |
+
|
188 |
Returns:
|
189 |
Dict[str, Any]: Dictionary of emergent properties.
|
190 |
"""
|
191 |
emergent_properties = {
|
192 |
"coherence_level": coherence,
|
193 |
"awareness_depth": self._calculate_awareness_depth(primary, secondaries),
|
194 |
+
"cognitive_complexity": self._calculate_cognitive_complexity(primary, secondaries),
|
195 |
+
"consciousness_state": str(primary.level)
|
196 |
}
|
197 |
+
|
198 |
# Simulate computational intensity with sleep
|
199 |
await asyncio.sleep(0.01)
|
200 |
+
|
201 |
# Add semantic richness if semantic contexts are available
|
202 |
if primary.semantic_context:
|
203 |
emergent_properties["semantic_richness"] = len(primary.semantic_context)
|
204 |
+
|
205 |
if any(s.semantic_context for s in secondaries if s.semantic_context):
|
206 |
emergent_properties["semantic_richness"] += sum(
|
207 |
len(s.semantic_context or {}) for s in secondaries
|
208 |
) / (len(secondaries) + 1) # Average including primary
|
209 |
+
|
210 |
return emergent_properties
|
211 |
+
|
212 |
+
def _calculate_awareness_depth(self,
|
213 |
+
primary: AwarenessState,
|
214 |
secondaries: List[AwarenessState]) -> float:
|
215 |
"""
|
216 |
Calculate the depth of awareness from the states.
|
217 |
+
|
218 |
Args:
|
219 |
primary (AwarenessState): Primary awareness state.
|
220 |
secondaries (List[AwarenessState]): List of secondary awareness states.
|
221 |
+
|
222 |
Returns:
|
223 |
float: Calculated awareness depth value.
|
224 |
"""
|
225 |
# Base depth from primary state's level
|
226 |
base_depth = primary.level.value / len(AwarenessLevel)
|
227 |
+
|
228 |
# Enhance with secondary states if present
|
229 |
if secondaries:
|
230 |
secondary_contribution = sum(s.level.value for s in secondaries) / (len(secondaries) * len(AwarenessLevel))
|
231 |
# Weighted combination
|
232 |
return (base_depth * 0.7) + (secondary_contribution * 0.3)
|
233 |
+
|
234 |
return base_depth
|
235 |
+
|
236 |
+
def _calculate_cognitive_complexity(self,
|
237 |
+
primary: AwarenessState,
|
238 |
secondaries: List[AwarenessState]) -> float:
|
239 |
"""
|
240 |
Calculate the cognitive complexity of the integrated state.
|
241 |
+
|
242 |
Args:
|
243 |
primary (AwarenessState): Primary awareness state.
|
244 |
secondaries (List[AwarenessState]): List of secondary awareness states.
|
245 |
+
|
246 |
Returns:
|
247 |
float: Cognitive complexity value.
|
248 |
"""
|
249 |
# Base complexity from primary state
|
250 |
base_complexity = len(primary.cognition_state) / 10 # Normalize
|
251 |
+
|
252 |
# Enhance with secondary states
|
253 |
if secondaries:
|
254 |
# Average complexity of secondaries
|
255 |
secondary_complexity = sum(len(s.cognition_state) for s in secondaries) / len(secondaries) / 10
|
256 |
interaction_factor = len(secondaries) * 0.1 # More states = more complexity
|
257 |
+
|
258 |
return min(1.0, base_complexity + secondary_complexity + interaction_factor)
|
259 |
+
|
260 |
return min(1.0, base_complexity)
|
261 |
+
|
262 |
def _calculate_teleological_vector(self,
|
263 |
primary: AwarenessState,
|
264 |
secondaries: List[AwarenessState]) -> Dict[str, float]:
|
265 |
"""
|
266 |
Calculate the teleological vector representing purposeful direction.
|
267 |
+
|
268 |
Args:
|
269 |
primary (AwarenessState): Primary awareness state.
|
270 |
secondaries (List[AwarenessState]): List of secondary awareness states.
|
271 |
+
|
272 |
Returns:
|
273 |
Dict[str, float]: A vector of purpose directions and intensities.
|
274 |
"""
|
|
|
280 |
"coherence_maintenance": 0.5,
|
281 |
"purposeful_action": 0.5
|
282 |
}
|
283 |
+
|
284 |
# Modify based on primary state
|
285 |
if primary.level == AwarenessLevel.SELF_AWARE or primary.level == AwarenessLevel.TRANSCENDENT:
|
286 |
teleological_vector["meaning_seeking"] += 0.2
|
287 |
teleological_vector["complexity_increase"] += 0.1
|
288 |
+
|
289 |
# Emotional valence affects self-preservation and purposeful action
|
290 |
teleological_vector["self_preservation"] += primary.emotional_valence * 0.2
|
291 |
teleological_vector["purposeful_action"] += abs(primary.emotional_valence) * 0.3
|
292 |
+
|
293 |
# Secondary states influence
|
294 |
if secondaries:
|
295 |
# Coherence maintenance influenced by number of states to integrate
|
296 |
teleological_vector["coherence_maintenance"] += min(0.4, len(secondaries) * 0.1)
|
297 |
+
|
298 |
# Average emotional valence affects meaning seeking
|
299 |
avg_emotion = sum(s.emotional_valence for s in secondaries) / len(secondaries)
|
300 |
teleological_vector["meaning_seeking"] += avg_emotion * 0.1
|
301 |
+
|
302 |
# Normalize values to 0.0-1.0 range
|
303 |
for key in teleological_vector:
|
304 |
teleological_vector[key] = max(0.0, min(1.0, teleological_vector[key]))
|
305 |
+
|
306 |
return teleological_vector
|
307 |
+
|
308 |
def get_integration_history(self, limit: int = 10) -> List[IntegratedState]:
|
309 |
"""
|
310 |
Retrieve recent integration history.
|
311 |
+
|
312 |
Args:
|
313 |
limit (int): Maximum number of history items to return. Defaults to 10.
|
314 |
+
|
315 |
Returns:
|
316 |
List[IntegratedState]: Recent integration states.
|
317 |
"""
|
318 |
return self.state_history[-limit:] if self.state_history else []
|
|
src/core/metacognitive_monitor.py
CHANGED
@@ -18,11 +18,31 @@ class MetaCognitiveMonitor:
|
|
18 |
error_detection={},
|
19 |
learning_progress=0.0
|
20 |
)
|
21 |
-
|
22 |
def analyze(self, current_state):
|
23 |
self._assess_cognitive_load(current_state)
|
24 |
self._track_attention_allocation(current_state)
|
25 |
self._monitor_processing_efficiency(current_state)
|
26 |
self._detect_errors(current_state)
|
27 |
self._evaluate_learning(current_state)
|
28 |
-
return self.current_state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
error_detection={},
|
19 |
learning_progress=0.0
|
20 |
)
|
21 |
+
|
22 |
def analyze(self, current_state):
|
23 |
self._assess_cognitive_load(current_state)
|
24 |
self._track_attention_allocation(current_state)
|
25 |
self._monitor_processing_efficiency(current_state)
|
26 |
self._detect_errors(current_state)
|
27 |
self._evaluate_learning(current_state)
|
28 |
+
return self.current_state
|
29 |
+
|
30 |
+
def _assess_cognitive_load(self, current_state):
|
31 |
+
# Implementation for cognitive load assessment
|
32 |
+
pass
|
33 |
+
|
34 |
+
def _track_attention_allocation(self, current_state):
|
35 |
+
# Implementation for attention allocation tracking
|
36 |
+
pass
|
37 |
+
|
38 |
+
def _monitor_processing_efficiency(self, current_state):
|
39 |
+
# Implementation for processing efficiency monitoring
|
40 |
+
pass
|
41 |
+
|
42 |
+
def _detect_errors(self, current_state):
|
43 |
+
# Implementation for error detection
|
44 |
+
pass
|
45 |
+
|
46 |
+
def _evaluate_learning(self, current_state):
|
47 |
+
# Implementation for learning evaluation
|
48 |
+
pass
|
src/core/multimodal_perception.py
CHANGED
@@ -11,6 +11,42 @@ class PerceptionState:
|
|
11 |
context_vector: torch.Tensor
|
12 |
attention_weights: Dict[str, float]
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
class MultiModalEncoder(nn.Module):
|
15 |
def __init__(self):
|
16 |
super().__init__()
|
@@ -18,16 +54,32 @@ class MultiModalEncoder(nn.Module):
|
|
18 |
self.audio_encoder = AudioProcessor()
|
19 |
self.text_encoder = TextProcessor()
|
20 |
self.fusion_layer = ModalityFusion()
|
21 |
-
|
22 |
def forward(self, inputs: Dict[str, torch.Tensor]) -> PerceptionState:
|
23 |
visual_features = self.visual_encoder(inputs.get('visual'))
|
24 |
audio_features = self.audio_encoder(inputs.get('audio'))
|
25 |
text_features = self.text_encoder(inputs.get('text'))
|
26 |
-
|
27 |
fused_representation = self.fusion_layer(
|
28 |
visual_features,
|
29 |
audio_features,
|
30 |
text_features
|
31 |
)
|
32 |
-
|
33 |
-
return self._create_perception_state(fused_representation)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
context_vector: torch.Tensor
|
12 |
attention_weights: Dict[str, float]
|
13 |
|
14 |
+
class VisualProcessor(nn.Module):
|
15 |
+
def __init__(self):
|
16 |
+
super().__init__()
|
17 |
+
# Visual processing layers would be defined here
|
18 |
+
|
19 |
+
def forward(self, visual_input):
|
20 |
+
# Process visual input
|
21 |
+
return visual_input if visual_input is not None else torch.zeros(1)
|
22 |
+
|
23 |
+
class AudioProcessor(nn.Module):
|
24 |
+
def __init__(self):
|
25 |
+
super().__init__()
|
26 |
+
# Audio processing layers would be defined here
|
27 |
+
|
28 |
+
def forward(self, audio_input):
|
29 |
+
# Process audio input
|
30 |
+
return audio_input if audio_input is not None else torch.zeros(1)
|
31 |
+
|
32 |
+
class TextProcessor(nn.Module):
|
33 |
+
def __init__(self):
|
34 |
+
super().__init__()
|
35 |
+
# Text processing layers would be defined here
|
36 |
+
|
37 |
+
def forward(self, text_input):
|
38 |
+
# Process text input
|
39 |
+
return text_input if text_input is not None else torch.zeros(1)
|
40 |
+
|
41 |
+
class ModalityFusion(nn.Module):
|
42 |
+
def __init__(self):
|
43 |
+
super().__init__()
|
44 |
+
# Fusion layers would be defined here
|
45 |
+
|
46 |
+
def forward(self, visual, audio, text):
|
47 |
+
# Fusion logic
|
48 |
+
return torch.cat([visual, audio, text], dim=-1) if all(x is not None for x in [visual, audio, text]) else torch.zeros(1)
|
49 |
+
|
50 |
class MultiModalEncoder(nn.Module):
|
51 |
def __init__(self):
|
52 |
super().__init__()
|
|
|
54 |
self.audio_encoder = AudioProcessor()
|
55 |
self.text_encoder = TextProcessor()
|
56 |
self.fusion_layer = ModalityFusion()
|
57 |
+
|
58 |
def forward(self, inputs: Dict[str, torch.Tensor]) -> PerceptionState:
|
59 |
visual_features = self.visual_encoder(inputs.get('visual'))
|
60 |
audio_features = self.audio_encoder(inputs.get('audio'))
|
61 |
text_features = self.text_encoder(inputs.get('text'))
|
62 |
+
|
63 |
fused_representation = self.fusion_layer(
|
64 |
visual_features,
|
65 |
audio_features,
|
66 |
text_features
|
67 |
)
|
68 |
+
|
69 |
+
return self._create_perception_state(visual_features, audio_features, text_features, fused_representation)
|
70 |
+
|
71 |
+
def _create_perception_state(self, visual_features, audio_features, text_features, fused_representation):
|
72 |
+
# Create an attention weights dictionary
|
73 |
+
attention_weights = {
|
74 |
+
'visual': 0.33,
|
75 |
+
'audio': 0.33,
|
76 |
+
'text': 0.34
|
77 |
+
}
|
78 |
+
|
79 |
+
return PerceptionState(
|
80 |
+
visual_data=visual_features,
|
81 |
+
audio_data=audio_features,
|
82 |
+
text_data=text_features,
|
83 |
+
context_vector=fused_representation,
|
84 |
+
attention_weights=attention_weights
|
85 |
+
)
|
src/core/ontological_database.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from typing import Dict, List, Set, Optional
|
2 |
import networkx as nx
|
3 |
|
4 |
class OntologicalDatabase:
|
@@ -6,25 +6,40 @@ class OntologicalDatabase:
|
|
6 |
self.knowledge_graph = nx.MultiDiGraph()
|
7 |
self.relation_types = set()
|
8 |
self.temporal_index = {}
|
9 |
-
|
10 |
-
def add_knowledge(self, concept: str, properties: Dict[str, Any],
|
11 |
relations: List[Dict[str, Any]] = None) -> None:
|
12 |
self.knowledge_graph.add_node(concept, **properties)
|
13 |
if relations:
|
14 |
for relation in relations:
|
15 |
-
self.add_relation(concept, relation)
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
results = self._search_knowledge_graph(query)
|
19 |
temporal_context = self._get_temporal_context(query)
|
20 |
return self._integrate_results(results, temporal_context)
|
21 |
-
|
22 |
def add_relation(self, source: str, target: str, relation_type: str, properties: Dict[str, Any]) -> None:
|
23 |
-
self.knowledge_graph.add_edge(source, target,
|
24 |
-
relation_type=relation_type,
|
25 |
**properties)
|
26 |
self.relation_types.add(relation_type)
|
27 |
-
|
28 |
def query_knowledge(self, concept: str, relation_type: Optional[str] = None) -> Dict[str, Any]:
|
29 |
if relation_type:
|
30 |
return {
|
@@ -35,4 +50,4 @@ class OntologicalDatabase:
|
|
35 |
return {
|
36 |
'concept': concept,
|
37 |
'properties': self.knowledge_graph.nodes[concept]
|
38 |
-
}
|
|
|
1 |
+
from typing import Dict, List, Set, Optional, Any
|
2 |
import networkx as nx
|
3 |
|
4 |
class OntologicalDatabase:
|
|
|
6 |
self.knowledge_graph = nx.MultiDiGraph()
|
7 |
self.relation_types = set()
|
8 |
self.temporal_index = {}
|
9 |
+
|
10 |
+
def add_knowledge(self, concept: str, properties: Dict[str, Any],
|
11 |
relations: List[Dict[str, Any]] = None) -> None:
|
12 |
self.knowledge_graph.add_node(concept, **properties)
|
13 |
if relations:
|
14 |
for relation in relations:
|
15 |
+
self.add_relation(concept, relation.get('target'),
|
16 |
+
relation.get('relation_type'),
|
17 |
+
relation.get('properties', {}))
|
18 |
+
|
19 |
+
def _search_knowledge_graph(self, query: Dict[str, Any]) -> Dict[str, Any]:
|
20 |
+
# Placeholder implementation
|
21 |
+
return {}
|
22 |
+
|
23 |
+
def _get_temporal_context(self, query: Dict[str, Any]) -> Dict[str, Any]:
|
24 |
+
# Placeholder implementation
|
25 |
+
return {}
|
26 |
+
|
27 |
+
def _integrate_results(self, results: Dict[str, Any],
|
28 |
+
temporal_context: Dict[str, Any]) -> Dict[str, Any]:
|
29 |
+
# Placeholder implementation
|
30 |
+
return results
|
31 |
+
|
32 |
+
def query_by_complex(self, query: Dict[str, Any]) -> Dict[str, Any]:
|
33 |
results = self._search_knowledge_graph(query)
|
34 |
temporal_context = self._get_temporal_context(query)
|
35 |
return self._integrate_results(results, temporal_context)
|
36 |
+
|
37 |
def add_relation(self, source: str, target: str, relation_type: str, properties: Dict[str, Any]) -> None:
|
38 |
+
self.knowledge_graph.add_edge(source, target,
|
39 |
+
relation_type=relation_type,
|
40 |
**properties)
|
41 |
self.relation_types.add(relation_type)
|
42 |
+
|
43 |
def query_knowledge(self, concept: str, relation_type: Optional[str] = None) -> Dict[str, Any]:
|
44 |
if relation_type:
|
45 |
return {
|
|
|
50 |
return {
|
51 |
'concept': concept,
|
52 |
'properties': self.knowledge_graph.nodes[concept]
|
53 |
+
}
|
src/core/phi_prime_calculator.py
CHANGED
@@ -3,18 +3,28 @@ from typing import Dict, List, Any
|
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
class PhiPrimeCalculator:
|
7 |
def __init__(self, num_dimensions: int = 128):
|
8 |
self.num_dimensions = num_dimensions
|
9 |
self.integration_threshold = 0.7
|
10 |
self.information_metrics = InformationMetrics()
|
11 |
self.integration_analyzer = IntegrationAnalyzer()
|
12 |
-
|
13 |
def compute(self, system_state: Dict[str, Any]) -> float:
|
14 |
information_content = self.information_metrics.calculate(system_state)
|
15 |
integration_level = self.integration_analyzer.analyze(system_state)
|
16 |
-
|
17 |
return self._compute_phi_prime(information_content, integration_level)
|
18 |
-
|
19 |
def _compute_phi_prime(self, information: float, integration: float) -> float:
|
20 |
-
return (information * integration) / self.num_dimensions
|
|
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
|
6 |
+
class InformationMetrics:
|
7 |
+
def calculate(self, system_state: Dict[str, Any]) -> float:
|
8 |
+
# Placeholder implementation
|
9 |
+
return 1.0
|
10 |
+
|
11 |
+
class IntegrationAnalyzer:
|
12 |
+
def analyze(self, system_state: Dict[str, Any]) -> float:
|
13 |
+
# Placeholder implementation
|
14 |
+
return 0.8
|
15 |
+
|
16 |
class PhiPrimeCalculator:
|
17 |
def __init__(self, num_dimensions: int = 128):
|
18 |
self.num_dimensions = num_dimensions
|
19 |
self.integration_threshold = 0.7
|
20 |
self.information_metrics = InformationMetrics()
|
21 |
self.integration_analyzer = IntegrationAnalyzer()
|
22 |
+
|
23 |
def compute(self, system_state: Dict[str, Any]) -> float:
|
24 |
information_content = self.information_metrics.calculate(system_state)
|
25 |
integration_level = self.integration_analyzer.analyze(system_state)
|
26 |
+
|
27 |
return self._compute_phi_prime(information_content, integration_level)
|
28 |
+
|
29 |
def _compute_phi_prime(self, information: float, integration: float) -> float:
|
30 |
+
return (information * integration) / self.num_dimensions
|
src/core/processing_pipeline.py
CHANGED
@@ -1,6 +1,27 @@
|
|
1 |
from dataclasses import dataclass
|
2 |
from typing import Any, Dict, List
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
@dataclass
|
5 |
class ProcessingState:
|
6 |
perception_data: Dict[str, Any]
|
@@ -14,9 +35,9 @@ class ProcessingPipeline:
|
|
14 |
self.context_integrator = ContextIntegrator()
|
15 |
self.consciousness_filter = ConsciousnessFilter()
|
16 |
self.reflective_analyzer = ReflectiveAnalyzer()
|
17 |
-
|
18 |
def process(self, input_data: Any) -> ProcessingState:
|
19 |
perception = self.perception_encoder.encode(input_data)
|
20 |
context = self.context_integrator.integrate(perception)
|
21 |
filtered_state = self.consciousness_filter.filter(context)
|
22 |
-
return self.reflective_analyzer.analyze(filtered_state)
|
|
|
1 |
from dataclasses import dataclass
|
2 |
from typing import Any, Dict, List
|
3 |
|
4 |
+
# Define the missing classes
|
5 |
+
class MultiModalEncoder:
|
6 |
+
def encode(self, input_data: Any) -> Dict[str, Any]:
|
7 |
+
# Implementation would go here
|
8 |
+
return {}
|
9 |
+
|
10 |
+
class ContextIntegrator:
|
11 |
+
def integrate(self, perception: Dict[str, Any]) -> Dict[str, Any]:
|
12 |
+
# Implementation would go here
|
13 |
+
return {}
|
14 |
+
|
15 |
+
class ConsciousnessFilter:
|
16 |
+
def filter(self, context: Dict[str, Any]) -> Any:
|
17 |
+
# Implementation would go here
|
18 |
+
return {}
|
19 |
+
|
20 |
+
class ReflectiveAnalyzer:
|
21 |
+
def analyze(self, filtered_state: Any) -> 'ProcessingState':
|
22 |
+
# Implementation would go here
|
23 |
+
return ProcessingState({}, {}, 0.0, {})
|
24 |
+
|
25 |
@dataclass
|
26 |
class ProcessingState:
|
27 |
perception_data: Dict[str, Any]
|
|
|
35 |
self.context_integrator = ContextIntegrator()
|
36 |
self.consciousness_filter = ConsciousnessFilter()
|
37 |
self.reflective_analyzer = ReflectiveAnalyzer()
|
38 |
+
|
39 |
def process(self, input_data: Any) -> ProcessingState:
|
40 |
perception = self.perception_encoder.encode(input_data)
|
41 |
context = self.context_integrator.integrate(perception)
|
42 |
filtered_state = self.consciousness_filter.filter(context)
|
43 |
+
return self.reflective_analyzer.analyze(filtered_state)
|
src/core/reflexive_layer.py
CHANGED
@@ -1,6 +1,24 @@
|
|
1 |
from dataclasses import dataclass
|
2 |
from typing import Dict, List, Any
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
@dataclass
|
5 |
class ReflectionOutput:
|
6 |
insights: Dict[str, Any]
|
@@ -14,12 +32,12 @@ class ReflexiveLayer:
|
|
14 |
self.self_evaluation_system = SelfEvaluationSystem()
|
15 |
self.consciousness_threshold = 0.7
|
16 |
self.reflection_history = []
|
17 |
-
|
18 |
def process_reflection(self, current_state):
|
19 |
monitoring_results = self.meta_cognitive_monitor.analyze(current_state)
|
20 |
evaluation_results = self.self_evaluation_system.evaluate(monitoring_results)
|
21 |
return self._generate_reflection_output(monitoring_results, evaluation_results)
|
22 |
-
|
23 |
def _generate_reflection_output(self, monitoring_results, evaluation_results):
|
24 |
output = ReflectionOutput(
|
25 |
insights=self._extract_insights(monitoring_results),
|
@@ -29,7 +47,7 @@ class ReflexiveLayer:
|
|
29 |
)
|
30 |
self.reflection_history.append(output)
|
31 |
return output
|
32 |
-
|
33 |
def _extract_insights(self, monitoring_results):
|
34 |
return {
|
35 |
'cognitive_patterns': self._analyze_cognitive_patterns(),
|
@@ -37,11 +55,19 @@ class ReflexiveLayer:
|
|
37 |
'attention_distribution': monitoring_results.attention_focus,
|
38 |
'processing_efficiency': monitoring_results.processing_efficiency
|
39 |
}
|
40 |
-
|
41 |
def _calculate_consciousness_state(self):
|
42 |
# Implementation of consciousness state calculation
|
43 |
-
|
44 |
-
|
45 |
def _compute_awareness_metrics(self):
|
46 |
# Implementation of self-awareness metrics computation
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from dataclasses import dataclass
|
2 |
from typing import Dict, List, Any
|
3 |
|
4 |
+
# Define missing classes
|
5 |
+
class MetaCognitiveMonitor:
|
6 |
+
def analyze(self, current_state):
|
7 |
+
# Placeholder implementation
|
8 |
+
class MonitoringResults:
|
9 |
+
def __init__(self):
|
10 |
+
self.attention_focus = {}
|
11 |
+
self.processing_efficiency = 0.8
|
12 |
+
return MonitoringResults()
|
13 |
+
|
14 |
+
class SelfEvaluationSystem:
|
15 |
+
def evaluate(self, monitoring_results):
|
16 |
+
# Placeholder implementation
|
17 |
+
class EvaluationResults:
|
18 |
+
def __init__(self):
|
19 |
+
self.recommendations = []
|
20 |
+
return EvaluationResults()
|
21 |
+
|
22 |
@dataclass
|
23 |
class ReflectionOutput:
|
24 |
insights: Dict[str, Any]
|
|
|
32 |
self.self_evaluation_system = SelfEvaluationSystem()
|
33 |
self.consciousness_threshold = 0.7
|
34 |
self.reflection_history = []
|
35 |
+
|
36 |
def process_reflection(self, current_state):
|
37 |
monitoring_results = self.meta_cognitive_monitor.analyze(current_state)
|
38 |
evaluation_results = self.self_evaluation_system.evaluate(monitoring_results)
|
39 |
return self._generate_reflection_output(monitoring_results, evaluation_results)
|
40 |
+
|
41 |
def _generate_reflection_output(self, monitoring_results, evaluation_results):
|
42 |
output = ReflectionOutput(
|
43 |
insights=self._extract_insights(monitoring_results),
|
|
|
47 |
)
|
48 |
self.reflection_history.append(output)
|
49 |
return output
|
50 |
+
|
51 |
def _extract_insights(self, monitoring_results):
|
52 |
return {
|
53 |
'cognitive_patterns': self._analyze_cognitive_patterns(),
|
|
|
55 |
'attention_distribution': monitoring_results.attention_focus,
|
56 |
'processing_efficiency': monitoring_results.processing_efficiency
|
57 |
}
|
58 |
+
|
59 |
def _calculate_consciousness_state(self):
|
60 |
# Implementation of consciousness state calculation
|
61 |
+
return 0.8 # Return a default float value instead of None
|
62 |
+
|
63 |
def _compute_awareness_metrics(self):
|
64 |
# Implementation of self-awareness metrics computation
|
65 |
+
return {"self_reflection": 0.7, "adaptability": 0.8} # Return a default dict instead of None
|
66 |
+
|
67 |
+
def _analyze_cognitive_patterns(self):
|
68 |
+
# Implementation for analyzing cognitive patterns
|
69 |
+
return {"pattern_recognition": 0.75}
|
70 |
+
|
71 |
+
def _analyze_learning_trends(self):
|
72 |
+
# Implementation for analyzing learning trends
|
73 |
+
return {"improvement_rate": 0.65}
|
src/core/self_evaluation.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from enum import Enum
|
2 |
from dataclasses import dataclass
|
|
|
3 |
|
4 |
class EvaluationMetric(Enum):
|
5 |
ACCURACY = "accuracy"
|
@@ -18,16 +19,28 @@ class SelfEvaluationSystem:
|
|
18 |
def __init__(self):
|
19 |
self.evaluation_history = []
|
20 |
self.improvement_strategies = {}
|
21 |
-
|
22 |
def evaluate(self, monitoring_results):
|
23 |
evaluation = EvaluationResult(
|
24 |
metrics={metric: 0.0 for metric in EvaluationMetric},
|
25 |
recommendations=[],
|
26 |
confidence_level=0.0
|
27 |
)
|
28 |
-
|
29 |
self._assess_performance(monitoring_results, evaluation)
|
30 |
self._generate_recommendations(evaluation)
|
31 |
self._update_history(evaluation)
|
32 |
-
|
33 |
-
return evaluation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from enum import Enum
|
2 |
from dataclasses import dataclass
|
3 |
+
from typing import Dict, List
|
4 |
|
5 |
class EvaluationMetric(Enum):
|
6 |
ACCURACY = "accuracy"
|
|
|
19 |
def __init__(self):
|
20 |
self.evaluation_history = []
|
21 |
self.improvement_strategies = {}
|
22 |
+
|
23 |
def evaluate(self, monitoring_results):
|
24 |
evaluation = EvaluationResult(
|
25 |
metrics={metric: 0.0 for metric in EvaluationMetric},
|
26 |
recommendations=[],
|
27 |
confidence_level=0.0
|
28 |
)
|
29 |
+
|
30 |
self._assess_performance(monitoring_results, evaluation)
|
31 |
self._generate_recommendations(evaluation)
|
32 |
self._update_history(evaluation)
|
33 |
+
|
34 |
+
return evaluation
|
35 |
+
|
36 |
+
def _assess_performance(self, monitoring_results, evaluation):
|
37 |
+
# Placeholder for performance assessment logic
|
38 |
+
pass
|
39 |
+
|
40 |
+
def _generate_recommendations(self, evaluation):
|
41 |
+
# Placeholder for recommendation generation logic
|
42 |
+
pass
|
43 |
+
|
44 |
+
def _update_history(self, evaluation):
|
45 |
+
# Add the evaluation to history
|
46 |
+
self.evaluation_history.append(evaluation)
|
src/core/self_evolution.py
CHANGED
@@ -1,11 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
class SelfEvolutionFramework:
|
2 |
def __init__(self):
|
3 |
self.architecture_analyzer = ArchitectureAnalyzer()
|
4 |
self.modification_planner = ModificationPlanner()
|
5 |
self.safety_validator = SafetyValidator()
|
6 |
self.evolution_executor = EvolutionExecutor()
|
7 |
-
|
8 |
-
async def evolve_system(self,
|
9 |
performance_metrics: Dict[str, float],
|
10 |
system_state: Dict[str, Any]) -> Dict[str, Any]:
|
11 |
analysis = await self.architecture_analyzer.analyze(system_state)
|
@@ -13,8 +35,8 @@ class SelfEvolutionFramework:
|
|
13 |
analysis,
|
14 |
performance_metrics
|
15 |
)
|
16 |
-
|
17 |
if await self.safety_validator.validate_modifications(modification_plan):
|
18 |
return await self.evolution_executor.execute_evolution(modification_plan)
|
19 |
-
|
20 |
-
return {'status': 'evolution_blocked', 'reason': 'safety_constraints'}
|
|
|
1 |
+
from typing import Dict, Any
|
2 |
+
|
3 |
+
class ArchitectureAnalyzer:
|
4 |
+
async def analyze(self, system_state):
|
5 |
+
# Implementation would go here
|
6 |
+
return {}
|
7 |
+
|
8 |
+
class ModificationPlanner:
|
9 |
+
async def generate_plan(self, analysis, performance_metrics):
|
10 |
+
# Implementation would go here
|
11 |
+
return {}
|
12 |
+
|
13 |
+
class SafetyValidator:
|
14 |
+
async def validate_modifications(self, modification_plan):
|
15 |
+
# Implementation would go here
|
16 |
+
return True
|
17 |
+
|
18 |
+
class EvolutionExecutor:
|
19 |
+
async def execute_evolution(self, modification_plan):
|
20 |
+
# Implementation would go here
|
21 |
+
return {'status': 'evolution_completed', 'changes': {}}
|
22 |
+
|
23 |
class SelfEvolutionFramework:
|
24 |
def __init__(self):
|
25 |
self.architecture_analyzer = ArchitectureAnalyzer()
|
26 |
self.modification_planner = ModificationPlanner()
|
27 |
self.safety_validator = SafetyValidator()
|
28 |
self.evolution_executor = EvolutionExecutor()
|
29 |
+
|
30 |
+
async def evolve_system(self,
|
31 |
performance_metrics: Dict[str, float],
|
32 |
system_state: Dict[str, Any]) -> Dict[str, Any]:
|
33 |
analysis = await self.architecture_analyzer.analyze(system_state)
|
|
|
35 |
analysis,
|
36 |
performance_metrics
|
37 |
)
|
38 |
+
|
39 |
if await self.safety_validator.validate_modifications(modification_plan):
|
40 |
return await self.evolution_executor.execute_evolution(modification_plan)
|
41 |
+
|
42 |
+
return {'status': 'evolution_blocked', 'reason': 'safety_constraints'}
|
src/core/semiotic_network.py
CHANGED
@@ -1,8 +1,18 @@
|
|
1 |
from dataclasses import dataclass
|
2 |
-
from typing import Dict, List, Optional
|
3 |
import networkx as nx
|
4 |
import numpy as np
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
@dataclass
|
7 |
class SignNode:
|
8 |
id: str
|
@@ -16,14 +26,36 @@ class SemioticNetworkBuilder:
|
|
16 |
self.graph = nx.MultiDiGraph()
|
17 |
self.meaning_extractor = MeaningExtractor()
|
18 |
self.context_analyzer = ContextAnalyzer()
|
19 |
-
|
20 |
def construct(self, input_data: Dict[str, Any]) -> nx.MultiDiGraph:
|
21 |
signs = self._extract_signs(input_data)
|
22 |
self._build_nodes(signs)
|
23 |
self._establish_relations()
|
24 |
return self._optimize_network()
|
25 |
-
|
26 |
def _extract_signs(self, input_data: Dict[str, Any]) -> List[SignNode]:
|
27 |
meanings = self.meaning_extractor.process(input_data)
|
28 |
contexts = self.context_analyzer.analyze(input_data)
|
29 |
-
return [self._create_sign_node(m, c) for m, c in zip(meanings, contexts)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from dataclasses import dataclass
|
2 |
+
from typing import Dict, List, Optional, Any
|
3 |
import networkx as nx
|
4 |
import numpy as np
|
5 |
|
6 |
+
class MeaningExtractor:
|
7 |
+
def process(self, input_data: Dict[str, Any]) -> List:
|
8 |
+
# Placeholder implementation
|
9 |
+
return []
|
10 |
+
|
11 |
+
class ContextAnalyzer:
|
12 |
+
def analyze(self, input_data: Dict[str, Any]) -> List:
|
13 |
+
# Placeholder implementation
|
14 |
+
return []
|
15 |
+
|
16 |
@dataclass
|
17 |
class SignNode:
|
18 |
id: str
|
|
|
26 |
self.graph = nx.MultiDiGraph()
|
27 |
self.meaning_extractor = MeaningExtractor()
|
28 |
self.context_analyzer = ContextAnalyzer()
|
29 |
+
|
30 |
def construct(self, input_data: Dict[str, Any]) -> nx.MultiDiGraph:
|
31 |
signs = self._extract_signs(input_data)
|
32 |
self._build_nodes(signs)
|
33 |
self._establish_relations()
|
34 |
return self._optimize_network()
|
35 |
+
|
36 |
def _extract_signs(self, input_data: Dict[str, Any]) -> List[SignNode]:
|
37 |
meanings = self.meaning_extractor.process(input_data)
|
38 |
contexts = self.context_analyzer.analyze(input_data)
|
39 |
+
return [self._create_sign_node(m, c) for m, c in zip(meanings, contexts)]
|
40 |
+
|
41 |
+
def _build_nodes(self, signs: List[SignNode]) -> None:
|
42 |
+
# Placeholder implementation
|
43 |
+
pass
|
44 |
+
|
45 |
+
def _establish_relations(self) -> None:
|
46 |
+
# Placeholder implementation
|
47 |
+
pass
|
48 |
+
|
49 |
+
def _optimize_network(self) -> nx.MultiDiGraph:
|
50 |
+
# Placeholder implementation
|
51 |
+
return self.graph
|
52 |
+
|
53 |
+
def _create_sign_node(self, meaning, context) -> SignNode:
|
54 |
+
# Placeholder implementation
|
55 |
+
return SignNode(
|
56 |
+
id="placeholder",
|
57 |
+
level="",
|
58 |
+
meaning_vector=np.array([]),
|
59 |
+
context={},
|
60 |
+
relations=[]
|
61 |
+
)
|
src/core/semiotic_processor.py
CHANGED
@@ -26,7 +26,7 @@ class SemioticState:
|
|
26 |
|
27 |
class SemioticNetworkBuilder:
|
28 |
"""Builds semiotic networks from input data, representing sign relationships."""
|
29 |
-
|
30 |
def __init__(self):
|
31 |
self.relation_encoder = nn.Sequential(
|
32 |
nn.Linear(768, 256),
|
@@ -34,28 +34,28 @@ class SemioticNetworkBuilder:
|
|
34 |
nn.Linear(256, 128)
|
35 |
)
|
36 |
self.graph_state = {}
|
37 |
-
|
38 |
def construct(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
|
39 |
"""
|
40 |
Construct a semiotic network from input data.
|
41 |
-
|
42 |
Args:
|
43 |
input_data: Dictionary containing sign and context information
|
44 |
-
|
45 |
Returns:
|
46 |
Dictionary containing the constructed semiotic network
|
47 |
"""
|
48 |
encoded_signs = self._encode_signs(input_data.get("signs", []))
|
49 |
context_embedding = self._process_context(input_data.get("context", {}))
|
50 |
relations = self._build_relations(encoded_signs, context_embedding)
|
51 |
-
|
52 |
return {
|
53 |
"signs": encoded_signs,
|
54 |
"context": context_embedding,
|
55 |
"relations": relations,
|
56 |
"meta_info": self._extract_meta_information(input_data)
|
57 |
}
|
58 |
-
|
59 |
def _encode_signs(self, signs: List[Any]) -> Dict[str, torch.Tensor]:
|
60 |
"""Encode individual signs into vector representations."""
|
61 |
encoded = {}
|
@@ -63,12 +63,12 @@ class SemioticNetworkBuilder:
|
|
63 |
sign_tensor = torch.randn(768) # Placeholder for actual encoding
|
64 |
encoded[str(sign)] = self.relation_encoder(sign_tensor)
|
65 |
return encoded
|
66 |
-
|
67 |
def _process_context(self, context: Dict[str, Any]) -> torch.Tensor:
|
68 |
"""Process context information into an embedding."""
|
69 |
# Placeholder implementation
|
70 |
return torch.randn(128)
|
71 |
-
|
72 |
def _build_relations(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, float]:
|
73 |
"""Build relationships between signs in the context."""
|
74 |
relations = {}
|
@@ -78,7 +78,7 @@ class SemioticNetworkBuilder:
|
|
78 |
relation_strength = torch.cosine_similarity(signs[sign1], signs[sign2], dim=0)
|
79 |
relations[f"{sign1}-{sign2}"] = float(relation_strength)
|
80 |
return relations
|
81 |
-
|
82 |
def _extract_meta_information(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
|
83 |
"""Extract meta-information about the semiotic network."""
|
84 |
return {
|
@@ -88,96 +88,96 @@ class SemioticNetworkBuilder:
|
|
88 |
|
89 |
class SignInterpreter:
|
90 |
"""Interprets semiotic networks to extract meaning and relationships."""
|
91 |
-
|
92 |
def __init__(self):
|
93 |
self.interpretation_network = nn.Sequential(
|
94 |
nn.Linear(128, 64),
|
95 |
nn.ReLU(),
|
96 |
nn.Linear(64, 32)
|
97 |
)
|
98 |
-
|
99 |
def interpret(self, network: Dict[str, Any]) -> Dict[str, Any]:
|
100 |
"""
|
101 |
Interpret a semiotic network to extract meaningful patterns.
|
102 |
-
|
103 |
Args:
|
104 |
network: The semiotic network to interpret
|
105 |
-
|
106 |
Returns:
|
107 |
Dictionary containing interpretation results
|
108 |
"""
|
109 |
signs = network["signs"]
|
110 |
relations = network["relations"]
|
111 |
context = network["context"]
|
112 |
-
|
113 |
interpreted_meanings = self._interpret_meanings(signs, context)
|
114 |
relation_patterns = self._analyze_relations(relations)
|
115 |
contextual_insights = self._extract_contextual_insights(context)
|
116 |
-
|
117 |
return {
|
118 |
"meanings": interpreted_meanings,
|
119 |
"patterns": relation_patterns,
|
120 |
"contextual_insights": contextual_insights
|
121 |
}
|
122 |
-
|
123 |
def _interpret_meanings(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, Any]:
|
124 |
"""Extract meanings from signs in context."""
|
125 |
return {sign: {"salience": 0.8, "certainty": 0.7} for sign in signs}
|
126 |
-
|
127 |
def _analyze_relations(self, relations: Dict[str, float]) -> Dict[str, float]:
|
128 |
"""Analyze patterns in sign relations."""
|
129 |
return {"coherence": 0.8, "complexity": 0.6}
|
130 |
-
|
131 |
def _extract_contextual_insights(self, context: torch.Tensor) -> Dict[str, float]:
|
132 |
"""Extract insights from contextual information."""
|
133 |
return {"relevance": 0.75, "specificity": 0.65}
|
134 |
|
135 |
class SignGenerator:
|
136 |
"""Generates new signs based on interpretations and patterns."""
|
137 |
-
|
138 |
def __init__(self):
|
139 |
self.generator_network = nn.Sequential(
|
140 |
nn.Linear(32, 64),
|
141 |
nn.ReLU(),
|
142 |
nn.Linear(64, 128)
|
143 |
)
|
144 |
-
|
145 |
def create_signs(self, interpretation: Dict[str, Any]) -> Dict[str, Any]:
|
146 |
"""
|
147 |
Generate new signs based on interpretation.
|
148 |
-
|
149 |
Args:
|
150 |
interpretation: The interpretation to base generation on
|
151 |
-
|
152 |
Returns:
|
153 |
Dictionary containing generated signs and their properties
|
154 |
"""
|
155 |
meanings = interpretation["meanings"]
|
156 |
patterns = interpretation["patterns"]
|
157 |
-
|
158 |
generated = self._generate_from_patterns(patterns)
|
159 |
refined = self._refine_generated_signs(generated, meanings)
|
160 |
-
|
161 |
return {
|
162 |
"signs": refined,
|
163 |
"confidence": self._assess_generation_quality(refined)
|
164 |
}
|
165 |
-
|
166 |
def _generate_from_patterns(self, patterns: Dict[str, float]) -> List[torch.Tensor]:
|
167 |
"""Generate initial signs from observed patterns."""
|
168 |
return [torch.randn(128) for _ in range(3)] # Generate 3 new signs
|
169 |
-
|
170 |
def _refine_generated_signs(self, signs: List[torch.Tensor], meanings: Dict[str, Any]) -> List[Dict[str, Any]]:
|
171 |
"""Refine generated signs based on existing meanings."""
|
172 |
return [{"vector": sign, "quality": 0.7} for sign in signs]
|
173 |
-
|
174 |
def _assess_generation_quality(self, signs: List[Dict[str, Any]]) -> float:
|
175 |
"""Assess the quality of generated signs."""
|
176 |
return sum(sign["quality"] for sign in signs) / len(signs)
|
177 |
|
178 |
class SemioticProcessor:
|
179 |
"""Processes semiotic signs to extract and generate meaning."""
|
180 |
-
|
181 |
def __init__(self):
|
182 |
self.sign_encoder = nn.Sequential(
|
183 |
nn.Linear(768, 256), # Using proper input size (768)
|
@@ -187,50 +187,50 @@ class SemioticProcessor:
|
|
187 |
self.network_builder = SemioticNetworkBuilder()
|
188 |
self.interpreter = SignInterpreter()
|
189 |
self.generator = SignGenerator()
|
190 |
-
|
191 |
async def process(self, input_data: Dict[str, Any]) -> SemioticState:
|
192 |
"""
|
193 |
Process input data to extract semiotic meaning and generate new signs.
|
194 |
-
|
195 |
Args:
|
196 |
input_data: Dictionary containing sign and context information
|
197 |
-
|
198 |
Returns:
|
199 |
SemioticState representing the processed state
|
200 |
"""
|
201 |
# Build semiotic network
|
202 |
network = self.network_builder.construct(input_data)
|
203 |
-
|
204 |
# Interpret the network
|
205 |
interpretation = self.interpreter.interpret(network)
|
206 |
-
|
207 |
# Generate new signs if needed
|
208 |
if self._requires_generation(interpretation):
|
209 |
generated_signs = self.generator.create_signs(interpretation)
|
210 |
return self._integrate_semiotic_state(interpretation, generated_signs)
|
211 |
-
|
212 |
return self._create_semiotic_state(interpretation)
|
213 |
-
|
214 |
def _requires_generation(self, interpretation: Dict[str, Any]) -> bool:
|
215 |
"""
|
216 |
Determine if new sign generation is required based on interpretation.
|
217 |
-
|
218 |
Args:
|
219 |
interpretation: The current interpretation state
|
220 |
-
|
221 |
Returns:
|
222 |
Boolean indicating if generation is needed
|
223 |
"""
|
224 |
patterns = interpretation.get("patterns", {})
|
225 |
return patterns.get("coherence", 0) < 0.5 or len(interpretation.get("meanings", {})) < 3
|
226 |
-
|
227 |
def _integrate_semiotic_state(self, interpretation: Dict[str, Any], generated_signs: Dict[str, Any]) -> SemioticState:
|
228 |
"""
|
229 |
Integrate interpretation and generated signs into a semiotic state.
|
230 |
"""
|
231 |
meaning_vector = np.random.rand(128) # Placeholder for actual meaning vector
|
232 |
sign_vector = np.random.rand(128) # Placeholder for actual sign vector
|
233 |
-
|
234 |
return SemioticState(
|
235 |
sign_level=SignLevel.SEMANTIC,
|
236 |
meaning_vector=meaning_vector,
|
@@ -240,7 +240,7 @@ class SemioticProcessor:
|
|
240 |
context_embedding=np.random.rand(128),
|
241 |
semantic_relations=interpretation.get("contextual_insights", {})
|
242 |
)
|
243 |
-
|
244 |
def _create_semiotic_state(self, interpretation: Dict[str, Any]) -> SemioticState:
|
245 |
"""Create a semiotic state from interpretation without generation."""
|
246 |
return self._integrate_semiotic_state(interpretation, {"confidence": 0.8})
|
|
|
26 |
|
27 |
class SemioticNetworkBuilder:
|
28 |
"""Builds semiotic networks from input data, representing sign relationships."""
|
29 |
+
|
30 |
def __init__(self):
|
31 |
self.relation_encoder = nn.Sequential(
|
32 |
nn.Linear(768, 256),
|
|
|
34 |
nn.Linear(256, 128)
|
35 |
)
|
36 |
self.graph_state = {}
|
37 |
+
|
38 |
def construct(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
|
39 |
"""
|
40 |
Construct a semiotic network from input data.
|
41 |
+
|
42 |
Args:
|
43 |
input_data: Dictionary containing sign and context information
|
44 |
+
|
45 |
Returns:
|
46 |
Dictionary containing the constructed semiotic network
|
47 |
"""
|
48 |
encoded_signs = self._encode_signs(input_data.get("signs", []))
|
49 |
context_embedding = self._process_context(input_data.get("context", {}))
|
50 |
relations = self._build_relations(encoded_signs, context_embedding)
|
51 |
+
|
52 |
return {
|
53 |
"signs": encoded_signs,
|
54 |
"context": context_embedding,
|
55 |
"relations": relations,
|
56 |
"meta_info": self._extract_meta_information(input_data)
|
57 |
}
|
58 |
+
|
59 |
def _encode_signs(self, signs: List[Any]) -> Dict[str, torch.Tensor]:
|
60 |
"""Encode individual signs into vector representations."""
|
61 |
encoded = {}
|
|
|
63 |
sign_tensor = torch.randn(768) # Placeholder for actual encoding
|
64 |
encoded[str(sign)] = self.relation_encoder(sign_tensor)
|
65 |
return encoded
|
66 |
+
|
67 |
def _process_context(self, context: Dict[str, Any]) -> torch.Tensor:
|
68 |
"""Process context information into an embedding."""
|
69 |
# Placeholder implementation
|
70 |
return torch.randn(128)
|
71 |
+
|
72 |
def _build_relations(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, float]:
|
73 |
"""Build relationships between signs in the context."""
|
74 |
relations = {}
|
|
|
78 |
relation_strength = torch.cosine_similarity(signs[sign1], signs[sign2], dim=0)
|
79 |
relations[f"{sign1}-{sign2}"] = float(relation_strength)
|
80 |
return relations
|
81 |
+
|
82 |
def _extract_meta_information(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
|
83 |
"""Extract meta-information about the semiotic network."""
|
84 |
return {
|
|
|
88 |
|
89 |
class SignInterpreter:
|
90 |
"""Interprets semiotic networks to extract meaning and relationships."""
|
91 |
+
|
92 |
def __init__(self):
|
93 |
self.interpretation_network = nn.Sequential(
|
94 |
nn.Linear(128, 64),
|
95 |
nn.ReLU(),
|
96 |
nn.Linear(64, 32)
|
97 |
)
|
98 |
+
|
99 |
def interpret(self, network: Dict[str, Any]) -> Dict[str, Any]:
|
100 |
"""
|
101 |
Interpret a semiotic network to extract meaningful patterns.
|
102 |
+
|
103 |
Args:
|
104 |
network: The semiotic network to interpret
|
105 |
+
|
106 |
Returns:
|
107 |
Dictionary containing interpretation results
|
108 |
"""
|
109 |
signs = network["signs"]
|
110 |
relations = network["relations"]
|
111 |
context = network["context"]
|
112 |
+
|
113 |
interpreted_meanings = self._interpret_meanings(signs, context)
|
114 |
relation_patterns = self._analyze_relations(relations)
|
115 |
contextual_insights = self._extract_contextual_insights(context)
|
116 |
+
|
117 |
return {
|
118 |
"meanings": interpreted_meanings,
|
119 |
"patterns": relation_patterns,
|
120 |
"contextual_insights": contextual_insights
|
121 |
}
|
122 |
+
|
123 |
def _interpret_meanings(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, Any]:
|
124 |
"""Extract meanings from signs in context."""
|
125 |
return {sign: {"salience": 0.8, "certainty": 0.7} for sign in signs}
|
126 |
+
|
127 |
def _analyze_relations(self, relations: Dict[str, float]) -> Dict[str, float]:
|
128 |
"""Analyze patterns in sign relations."""
|
129 |
return {"coherence": 0.8, "complexity": 0.6}
|
130 |
+
|
131 |
def _extract_contextual_insights(self, context: torch.Tensor) -> Dict[str, float]:
|
132 |
"""Extract insights from contextual information."""
|
133 |
return {"relevance": 0.75, "specificity": 0.65}
|
134 |
|
135 |
class SignGenerator:
|
136 |
"""Generates new signs based on interpretations and patterns."""
|
137 |
+
|
138 |
def __init__(self):
|
139 |
self.generator_network = nn.Sequential(
|
140 |
nn.Linear(32, 64),
|
141 |
nn.ReLU(),
|
142 |
nn.Linear(64, 128)
|
143 |
)
|
144 |
+
|
145 |
def create_signs(self, interpretation: Dict[str, Any]) -> Dict[str, Any]:
|
146 |
"""
|
147 |
Generate new signs based on interpretation.
|
148 |
+
|
149 |
Args:
|
150 |
interpretation: The interpretation to base generation on
|
151 |
+
|
152 |
Returns:
|
153 |
Dictionary containing generated signs and their properties
|
154 |
"""
|
155 |
meanings = interpretation["meanings"]
|
156 |
patterns = interpretation["patterns"]
|
157 |
+
|
158 |
generated = self._generate_from_patterns(patterns)
|
159 |
refined = self._refine_generated_signs(generated, meanings)
|
160 |
+
|
161 |
return {
|
162 |
"signs": refined,
|
163 |
"confidence": self._assess_generation_quality(refined)
|
164 |
}
|
165 |
+
|
166 |
def _generate_from_patterns(self, patterns: Dict[str, float]) -> List[torch.Tensor]:
|
167 |
"""Generate initial signs from observed patterns."""
|
168 |
return [torch.randn(128) for _ in range(3)] # Generate 3 new signs
|
169 |
+
|
170 |
def _refine_generated_signs(self, signs: List[torch.Tensor], meanings: Dict[str, Any]) -> List[Dict[str, Any]]:
|
171 |
"""Refine generated signs based on existing meanings."""
|
172 |
return [{"vector": sign, "quality": 0.7} for sign in signs]
|
173 |
+
|
174 |
def _assess_generation_quality(self, signs: List[Dict[str, Any]]) -> float:
|
175 |
"""Assess the quality of generated signs."""
|
176 |
return sum(sign["quality"] for sign in signs) / len(signs)
|
177 |
|
178 |
class SemioticProcessor:
|
179 |
"""Processes semiotic signs to extract and generate meaning."""
|
180 |
+
|
181 |
def __init__(self):
|
182 |
self.sign_encoder = nn.Sequential(
|
183 |
nn.Linear(768, 256), # Using proper input size (768)
|
|
|
187 |
self.network_builder = SemioticNetworkBuilder()
|
188 |
self.interpreter = SignInterpreter()
|
189 |
self.generator = SignGenerator()
|
190 |
+
|
191 |
async def process(self, input_data: Dict[str, Any]) -> SemioticState:
|
192 |
"""
|
193 |
Process input data to extract semiotic meaning and generate new signs.
|
194 |
+
|
195 |
Args:
|
196 |
input_data: Dictionary containing sign and context information
|
197 |
+
|
198 |
Returns:
|
199 |
SemioticState representing the processed state
|
200 |
"""
|
201 |
# Build semiotic network
|
202 |
network = self.network_builder.construct(input_data)
|
203 |
+
|
204 |
# Interpret the network
|
205 |
interpretation = self.interpreter.interpret(network)
|
206 |
+
|
207 |
# Generate new signs if needed
|
208 |
if self._requires_generation(interpretation):
|
209 |
generated_signs = self.generator.create_signs(interpretation)
|
210 |
return self._integrate_semiotic_state(interpretation, generated_signs)
|
211 |
+
|
212 |
return self._create_semiotic_state(interpretation)
|
213 |
+
|
214 |
def _requires_generation(self, interpretation: Dict[str, Any]) -> bool:
|
215 |
"""
|
216 |
Determine if new sign generation is required based on interpretation.
|
217 |
+
|
218 |
Args:
|
219 |
interpretation: The current interpretation state
|
220 |
+
|
221 |
Returns:
|
222 |
Boolean indicating if generation is needed
|
223 |
"""
|
224 |
patterns = interpretation.get("patterns", {})
|
225 |
return patterns.get("coherence", 0) < 0.5 or len(interpretation.get("meanings", {})) < 3
|
226 |
+
|
227 |
def _integrate_semiotic_state(self, interpretation: Dict[str, Any], generated_signs: Dict[str, Any]) -> SemioticState:
|
228 |
"""
|
229 |
Integrate interpretation and generated signs into a semiotic state.
|
230 |
"""
|
231 |
meaning_vector = np.random.rand(128) # Placeholder for actual meaning vector
|
232 |
sign_vector = np.random.rand(128) # Placeholder for actual sign vector
|
233 |
+
|
234 |
return SemioticState(
|
235 |
sign_level=SignLevel.SEMANTIC,
|
236 |
meaning_vector=meaning_vector,
|
|
|
240 |
context_embedding=np.random.rand(128),
|
241 |
semantic_relations=interpretation.get("contextual_insights", {})
|
242 |
)
|
243 |
+
|
244 |
def _create_semiotic_state(self, interpretation: Dict[str, Any]) -> SemioticState:
|
245 |
"""Create a semiotic state from interpretation without generation."""
|
246 |
return self._integrate_semiotic_state(interpretation, {"confidence": 0.8})
|
src/core/sign_interpreter.py
CHANGED
@@ -1,17 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
class SignInterpreter:
|
2 |
def __init__(self):
|
3 |
self.context_analyzer = ContextAnalyzer()
|
4 |
self.meaning_extractor = MeaningExtractor()
|
5 |
self.relation_mapper = RelationMapper()
|
6 |
-
|
7 |
def interpret(self, semiotic_network: Dict[str, Any]) -> Dict[str, Any]:
|
8 |
context = self.context_analyzer.analyze(semiotic_network)
|
9 |
meaning = self.meaning_extractor.extract(semiotic_network, context)
|
10 |
relations = self.relation_mapper.map(meaning, context)
|
11 |
-
|
12 |
return {
|
13 |
'context': context,
|
14 |
'meaning': meaning,
|
15 |
'relations': relations,
|
16 |
'confidence': self._calculate_confidence(meaning, relations)
|
17 |
-
}
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Any
|
2 |
+
|
3 |
+
class ContextAnalyzer:
|
4 |
+
def analyze(self, semiotic_network):
|
5 |
+
# Implementation goes here
|
6 |
+
return {}
|
7 |
+
|
8 |
+
class MeaningExtractor:
|
9 |
+
def extract(self, semiotic_network, context):
|
10 |
+
# Implementation goes here
|
11 |
+
return {}
|
12 |
+
|
13 |
+
class RelationMapper:
|
14 |
+
def map(self, meaning, context):
|
15 |
+
# Implementation goes here
|
16 |
+
return {}
|
17 |
+
|
18 |
class SignInterpreter:
|
19 |
def __init__(self):
|
20 |
self.context_analyzer = ContextAnalyzer()
|
21 |
self.meaning_extractor = MeaningExtractor()
|
22 |
self.relation_mapper = RelationMapper()
|
23 |
+
|
24 |
def interpret(self, semiotic_network: Dict[str, Any]) -> Dict[str, Any]:
|
25 |
context = self.context_analyzer.analyze(semiotic_network)
|
26 |
meaning = self.meaning_extractor.extract(semiotic_network, context)
|
27 |
relations = self.relation_mapper.map(meaning, context)
|
28 |
+
|
29 |
return {
|
30 |
'context': context,
|
31 |
'meaning': meaning,
|
32 |
'relations': relations,
|
33 |
'confidence': self._calculate_confidence(meaning, relations)
|
34 |
+
}
|
35 |
+
|
36 |
+
def _calculate_confidence(self, meaning, relations):
|
37 |
+
# Implementation for confidence calculation
|
38 |
+
return 0.0
|
src/core/social_dynamics.py
CHANGED
@@ -1,16 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
class SocialDynamicsModeler:
|
2 |
def __init__(self):
|
3 |
self.relationship_graph = RelationshipGraph()
|
4 |
self.interaction_analyzer = InteractionAnalyzer()
|
5 |
self.group_dynamics = GroupDynamicsProcessor()
|
6 |
-
|
7 |
-
async def analyze_social_context(self,
|
8 |
interaction_data: Dict[str, Any],
|
9 |
social_context: Dict[str, Any]) -> Dict[str, Any]:
|
10 |
relationships = self.relationship_graph.update(interaction_data)
|
11 |
interaction_patterns = self.interaction_analyzer.process(interaction_data)
|
12 |
group_state = self.group_dynamics.analyze(social_context)
|
13 |
-
|
14 |
return {
|
15 |
'social_model': self._integrate_social_information(
|
16 |
relationships,
|
@@ -19,4 +36,16 @@ class SocialDynamicsModeler:
|
|
19 |
),
|
20 |
'recommendations': self._generate_social_strategies(group_state),
|
21 |
'predicted_dynamics': self._predict_social_evolution(relationships)
|
22 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Any
|
2 |
+
|
3 |
+
class RelationshipGraph:
|
4 |
+
def update(self, interaction_data):
|
5 |
+
# Placeholder for implementation
|
6 |
+
return {}
|
7 |
+
|
8 |
+
class InteractionAnalyzer:
|
9 |
+
def process(self, interaction_data):
|
10 |
+
# Placeholder for implementation
|
11 |
+
return {}
|
12 |
+
|
13 |
+
class GroupDynamicsProcessor:
|
14 |
+
def analyze(self, social_context):
|
15 |
+
# Placeholder for implementation
|
16 |
+
return {}
|
17 |
+
|
18 |
class SocialDynamicsModeler:
|
19 |
def __init__(self):
|
20 |
self.relationship_graph = RelationshipGraph()
|
21 |
self.interaction_analyzer = InteractionAnalyzer()
|
22 |
self.group_dynamics = GroupDynamicsProcessor()
|
23 |
+
|
24 |
+
async def analyze_social_context(self,
|
25 |
interaction_data: Dict[str, Any],
|
26 |
social_context: Dict[str, Any]) -> Dict[str, Any]:
|
27 |
relationships = self.relationship_graph.update(interaction_data)
|
28 |
interaction_patterns = self.interaction_analyzer.process(interaction_data)
|
29 |
group_state = self.group_dynamics.analyze(social_context)
|
30 |
+
|
31 |
return {
|
32 |
'social_model': self._integrate_social_information(
|
33 |
relationships,
|
|
|
36 |
),
|
37 |
'recommendations': self._generate_social_strategies(group_state),
|
38 |
'predicted_dynamics': self._predict_social_evolution(relationships)
|
39 |
+
}
|
40 |
+
|
41 |
+
def _integrate_social_information(self, relationships, interaction_patterns, group_state):
|
42 |
+
# Placeholder for implementation
|
43 |
+
return {}
|
44 |
+
|
45 |
+
def _generate_social_strategies(self, group_state):
|
46 |
+
# Placeholder for implementation
|
47 |
+
return []
|
48 |
+
|
49 |
+
def _predict_social_evolution(self, relationships):
|
50 |
+
# Placeholder for implementation
|
51 |
+
return {}
|
src/core/sparse_activation.py
CHANGED
@@ -3,18 +3,43 @@ import torch.nn as nn
|
|
3 |
from typing import Dict, Tuple, List
|
4 |
import numpy as np
|
5 |
|
|
|
|
|
|
|
|
|
6 |
class SparseActivationManager:
|
7 |
def __init__(self, sparsity_threshold: float = 0.95):
|
8 |
self.sparsity_threshold = sparsity_threshold
|
9 |
self.activation_history = []
|
10 |
self.pattern_analyzer = PatternAnalyzer()
|
11 |
-
|
12 |
def compute_pattern(self, input_tensor: torch.Tensor) -> torch.Tensor:
|
13 |
importance_scores = self._compute_importance_scores(input_tensor)
|
14 |
activation_mask = self._generate_activation_mask(importance_scores)
|
15 |
return self._apply_sparse_activation(input_tensor, activation_mask)
|
16 |
-
|
17 |
def _compute_importance_scores(self, input_tensor: torch.Tensor) -> torch.Tensor:
|
18 |
attention_weights = self._calculate_attention_weights(input_tensor)
|
19 |
gradient_information = self._compute_gradient_information(input_tensor)
|
20 |
-
return self._combine_importance_metrics(attention_weights, gradient_information)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from typing import Dict, Tuple, List
|
4 |
import numpy as np
|
5 |
|
6 |
+
class PatternAnalyzer:
|
7 |
+
def __init__(self):
|
8 |
+
pass
|
9 |
+
|
10 |
class SparseActivationManager:
|
11 |
def __init__(self, sparsity_threshold: float = 0.95):
|
12 |
self.sparsity_threshold = sparsity_threshold
|
13 |
self.activation_history = []
|
14 |
self.pattern_analyzer = PatternAnalyzer()
|
15 |
+
|
16 |
def compute_pattern(self, input_tensor: torch.Tensor) -> torch.Tensor:
|
17 |
importance_scores = self._compute_importance_scores(input_tensor)
|
18 |
activation_mask = self._generate_activation_mask(importance_scores)
|
19 |
return self._apply_sparse_activation(input_tensor, activation_mask)
|
20 |
+
|
21 |
def _compute_importance_scores(self, input_tensor: torch.Tensor) -> torch.Tensor:
|
22 |
attention_weights = self._calculate_attention_weights(input_tensor)
|
23 |
gradient_information = self._compute_gradient_information(input_tensor)
|
24 |
+
return self._combine_importance_metrics(attention_weights, gradient_information)
|
25 |
+
|
26 |
+
def _generate_activation_mask(self, importance_scores: torch.Tensor) -> torch.Tensor:
|
27 |
+
# Create a binary mask based on importance scores and sparsity threshold
|
28 |
+
return (importance_scores > self.sparsity_threshold).float()
|
29 |
+
|
30 |
+
def _apply_sparse_activation(self, input_tensor: torch.Tensor, activation_mask: torch.Tensor) -> torch.Tensor:
|
31 |
+
# Apply the activation mask to the input tensor
|
32 |
+
return input_tensor * activation_mask
|
33 |
+
|
34 |
+
def _calculate_attention_weights(self, input_tensor: torch.Tensor) -> torch.Tensor:
|
35 |
+
# Calculate attention weights for the input tensor
|
36 |
+
return torch.sigmoid(input_tensor)
|
37 |
+
|
38 |
+
def _compute_gradient_information(self, input_tensor: torch.Tensor) -> torch.Tensor:
|
39 |
+
# Compute gradient information for the input tensor
|
40 |
+
return torch.abs(input_tensor)
|
41 |
+
|
42 |
+
def _combine_importance_metrics(self, attention_weights: torch.Tensor,
|
43 |
+
gradient_information: torch.Tensor) -> torch.Tensor:
|
44 |
+
# Combine multiple importance metrics into a single score
|
45 |
+
return attention_weights * gradient_information
|
src/core/theory_of_mind.py
CHANGED
@@ -10,28 +10,28 @@ class TheoryOfMind:
|
|
10 |
nn.Linear(256, 128)
|
11 |
)
|
12 |
self.belief_system = {}
|
13 |
-
|
14 |
def model_agent_mind(self,
|
15 |
agent_data: Dict[str, Any],
|
16 |
context: Dict[str, Any] = None) -> Dict[str, Any]:
|
17 |
# Theory of Mind implementation
|
18 |
mental_state = self._process_mental_state(agent_data)
|
19 |
beliefs = self._update_belief_system(mental_state, context)
|
20 |
-
|
21 |
return {
|
22 |
'mental_state': mental_state,
|
23 |
'beliefs': beliefs,
|
24 |
'predicted_behavior': self._predict_behavior(mental_state, beliefs)
|
25 |
}
|
26 |
-
|
27 |
-
def _process_mental_state(self, agent_data: Dict[str, Any]):
|
28 |
# Mental state processing implementation
|
29 |
-
|
30 |
-
|
31 |
-
def _update_belief_system(self, mental_state: Any, context: Dict[str, Any] = None):
|
32 |
# Belief system update implementation
|
33 |
-
|
34 |
-
|
35 |
-
def _predict_behavior(self, mental_state: Any, beliefs: Dict[str, Any]):
|
36 |
# Behavior prediction implementation
|
37 |
-
|
|
|
10 |
nn.Linear(256, 128)
|
11 |
)
|
12 |
self.belief_system = {}
|
13 |
+
|
14 |
def model_agent_mind(self,
|
15 |
agent_data: Dict[str, Any],
|
16 |
context: Dict[str, Any] = None) -> Dict[str, Any]:
|
17 |
# Theory of Mind implementation
|
18 |
mental_state = self._process_mental_state(agent_data)
|
19 |
beliefs = self._update_belief_system(mental_state, context)
|
20 |
+
|
21 |
return {
|
22 |
'mental_state': mental_state,
|
23 |
'beliefs': beliefs,
|
24 |
'predicted_behavior': self._predict_behavior(mental_state, beliefs)
|
25 |
}
|
26 |
+
|
27 |
+
def _process_mental_state(self, agent_data: Dict[str, Any]) -> Any:
|
28 |
# Mental state processing implementation
|
29 |
+
return {} # Return empty dict instead of None
|
30 |
+
|
31 |
+
def _update_belief_system(self, mental_state: Any, context: Dict[str, Any] = None) -> Dict[str, Any]:
|
32 |
# Belief system update implementation
|
33 |
+
return {} # Return empty dict instead of None
|
34 |
+
|
35 |
+
def _predict_behavior(self, mental_state: Any, beliefs: Dict[str, Any]) -> Any:
|
36 |
# Behavior prediction implementation
|
37 |
+
return {} # Return empty dict instead of None
|
src/core/topology_aware_router.py
CHANGED
@@ -1,11 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
class TopologyAwareRouter:
|
2 |
def __init__(self):
|
3 |
self.network_topology = NetworkTopology()
|
4 |
self.routing_metrics = RoutingMetrics()
|
5 |
self.optimization_engine = OptimizationEngine()
|
6 |
-
|
7 |
-
def compute_optimal_route(self,
|
8 |
-
source_expert: int,
|
9 |
target_expert: int,
|
10 |
data_size: int) -> List[int]:
|
11 |
topology_state = self.network_topology.get_current_state()
|
@@ -15,4 +32,4 @@ class TopologyAwareRouter:
|
|
15 |
target_expert,
|
16 |
data_size
|
17 |
)
|
18 |
-
return self.optimization_engine.find_optimal_path(routing_costs)
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
class NetworkTopology:
|
4 |
+
def get_current_state(self):
|
5 |
+
# Placeholder for actual implementation
|
6 |
+
return {}
|
7 |
+
|
8 |
+
class RoutingMetrics:
|
9 |
+
def calculate_costs(self, topology_state, source_expert, target_expert, data_size):
|
10 |
+
# Placeholder for actual implementation
|
11 |
+
return {}
|
12 |
+
|
13 |
+
class OptimizationEngine:
|
14 |
+
def find_optimal_path(self, routing_costs):
|
15 |
+
# Placeholder for actual implementation
|
16 |
+
return []
|
17 |
+
|
18 |
class TopologyAwareRouter:
|
19 |
def __init__(self):
|
20 |
self.network_topology = NetworkTopology()
|
21 |
self.routing_metrics = RoutingMetrics()
|
22 |
self.optimization_engine = OptimizationEngine()
|
23 |
+
|
24 |
+
def compute_optimal_route(self,
|
25 |
+
source_expert: int,
|
26 |
target_expert: int,
|
27 |
data_size: int) -> List[int]:
|
28 |
topology_state = self.network_topology.get_current_state()
|
|
|
32 |
target_expert,
|
33 |
data_size
|
34 |
)
|
35 |
+
return self.optimization_engine.find_optimal_path(routing_costs)
|
src/hardware/memory_hierarchy.py
CHANGED
@@ -1,10 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
class MemoryHierarchy:
|
2 |
def __init__(self):
|
3 |
self.l1_cache = NeuromorphicCache(size="64GB")
|
4 |
self.l2_cache = QuantumInspiredCache(size="256GB")
|
5 |
self.l3_cache = DistributedCache(size="1TB")
|
6 |
self.cache_manager = CacheCoherencyManager()
|
7 |
-
|
8 |
async def access_memory(self, key: str, level: Optional[int] = None) -> Any:
|
9 |
if level == 1:
|
10 |
return await self.l1_cache.get(key)
|
@@ -12,9 +43,16 @@ class MemoryHierarchy:
|
|
12 |
return await self.l2_cache.get(key)
|
13 |
elif level == 3:
|
14 |
return await self.l3_cache.get(key)
|
15 |
-
|
16 |
return await self._smart_cache_access(key)
|
17 |
-
|
18 |
async def _smart_cache_access(self, key: str) -> Any:
|
19 |
cache_decision = self.cache_manager.determine_optimal_cache(key)
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Any
|
2 |
+
|
3 |
+
class NeuromorphicCache:
|
4 |
+
def __init__(self, size: str):
|
5 |
+
self.size = size
|
6 |
+
|
7 |
+
async def get(self, key: str) -> Any:
|
8 |
+
# Implementation would go here
|
9 |
+
pass
|
10 |
+
|
11 |
+
class QuantumInspiredCache:
|
12 |
+
def __init__(self, size: str):
|
13 |
+
self.size = size
|
14 |
+
|
15 |
+
async def get(self, key: str) -> Any:
|
16 |
+
# Implementation would go here
|
17 |
+
pass
|
18 |
+
|
19 |
+
class DistributedCache:
|
20 |
+
def __init__(self, size: str):
|
21 |
+
self.size = size
|
22 |
+
|
23 |
+
async def get(self, key: str) -> Any:
|
24 |
+
# Implementation would go here
|
25 |
+
pass
|
26 |
+
|
27 |
+
class CacheCoherencyManager:
|
28 |
+
def determine_optimal_cache(self, key: str) -> int:
|
29 |
+
# Implementation would go here
|
30 |
+
return 1 # Default to L1 cache
|
31 |
+
|
32 |
class MemoryHierarchy:
|
33 |
def __init__(self):
|
34 |
self.l1_cache = NeuromorphicCache(size="64GB")
|
35 |
self.l2_cache = QuantumInspiredCache(size="256GB")
|
36 |
self.l3_cache = DistributedCache(size="1TB")
|
37 |
self.cache_manager = CacheCoherencyManager()
|
38 |
+
|
39 |
async def access_memory(self, key: str, level: Optional[int] = None) -> Any:
|
40 |
if level == 1:
|
41 |
return await self.l1_cache.get(key)
|
|
|
43 |
return await self.l2_cache.get(key)
|
44 |
elif level == 3:
|
45 |
return await self.l3_cache.get(key)
|
46 |
+
|
47 |
return await self._smart_cache_access(key)
|
48 |
+
|
49 |
async def _smart_cache_access(self, key: str) -> Any:
|
50 |
cache_decision = self.cache_manager.determine_optimal_cache(key)
|
51 |
+
if cache_decision == 1:
|
52 |
+
return await self.l1_cache.get(key)
|
53 |
+
elif cache_decision == 2:
|
54 |
+
return await self.l2_cache.get(key)
|
55 |
+
elif cache_decision == 3:
|
56 |
+
return await self.l3_cache.get(key)
|
57 |
+
else:
|
58 |
+
raise ValueError(f"Invalid cache level: {cache_decision}")
|
src/hardware/neural_processing_unit.py
CHANGED
@@ -11,6 +11,16 @@ class NPUState:
|
|
11 |
temperature: float
|
12 |
processing_efficiency: float
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
class NeuralProcessingUnit:
|
15 |
def __init__(self, num_cores: int = 128):
|
16 |
self.num_cores = num_cores
|
@@ -23,8 +33,12 @@ class NeuralProcessingUnit:
|
|
23 |
)
|
24 |
self.sparse_activation = SparseActivationManager()
|
25 |
self.expert_router = ExpertRoutingSystem()
|
26 |
-
|
27 |
async def process_neural_task(self, input_data: torch.Tensor) -> torch.Tensor:
|
28 |
activation_pattern = self.sparse_activation.compute_pattern(input_data)
|
29 |
expert_allocation = self.expert_router.allocate_experts(activation_pattern)
|
30 |
-
return await self._execute_neural_computation(input_data, expert_allocation)
|
|
|
|
|
|
|
|
|
|
11 |
temperature: float
|
12 |
processing_efficiency: float
|
13 |
|
14 |
+
class SparseActivationManager:
|
15 |
+
def compute_pattern(self, input_data: torch.Tensor) -> torch.Tensor:
|
16 |
+
# Placeholder implementation
|
17 |
+
return input_data
|
18 |
+
|
19 |
+
class ExpertRoutingSystem:
|
20 |
+
def allocate_experts(self, activation_pattern: torch.Tensor) -> Dict[str, int]:
|
21 |
+
# Placeholder implementation
|
22 |
+
return {"expert1": 1, "expert2": 2}
|
23 |
+
|
24 |
class NeuralProcessingUnit:
|
25 |
def __init__(self, num_cores: int = 128):
|
26 |
self.num_cores = num_cores
|
|
|
33 |
)
|
34 |
self.sparse_activation = SparseActivationManager()
|
35 |
self.expert_router = ExpertRoutingSystem()
|
36 |
+
|
37 |
async def process_neural_task(self, input_data: torch.Tensor) -> torch.Tensor:
|
38 |
activation_pattern = self.sparse_activation.compute_pattern(input_data)
|
39 |
expert_allocation = self.expert_router.allocate_experts(activation_pattern)
|
40 |
+
return await self._execute_neural_computation(input_data, expert_allocation)
|
41 |
+
|
42 |
+
async def _execute_neural_computation(self, input_data: torch.Tensor, expert_allocation: Dict[str, int]) -> torch.Tensor:
|
43 |
+
# Placeholder implementation
|
44 |
+
return input_data
|
src/model.py
CHANGED
@@ -7,14 +7,14 @@ class HIMModel:
|
|
7 |
self.config = config
|
8 |
self.tokenizer = AutoTokenizer.from_pretrained(config.base_model)
|
9 |
self.model = AutoModelForCausalLM.from_pretrained(config.base_model)
|
10 |
-
|
11 |
-
def generate_response(self, input_text: str, system_message: str =
|
12 |
# Prepare input with system message if provided
|
13 |
if system_message:
|
14 |
input_text = f"{system_message}\nUser: {input_text}\nHIM:"
|
15 |
-
|
16 |
inputs = self.tokenizer(input_text, return_tensors="pt")
|
17 |
-
|
18 |
outputs = self.model.generate(
|
19 |
inputs["input_ids"],
|
20 |
max_length=self.config.max_length,
|
@@ -22,5 +22,5 @@ class HIMModel:
|
|
22 |
top_p=self.config.top_p,
|
23 |
do_sample=True
|
24 |
)
|
25 |
-
|
26 |
-
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
7 |
self.config = config
|
8 |
self.tokenizer = AutoTokenizer.from_pretrained(config.base_model)
|
9 |
self.model = AutoModelForCausalLM.from_pretrained(config.base_model)
|
10 |
+
|
11 |
+
def generate_response(self, input_text: str, system_message: str = ""):
|
12 |
# Prepare input with system message if provided
|
13 |
if system_message:
|
14 |
input_text = f"{system_message}\nUser: {input_text}\nHIM:"
|
15 |
+
|
16 |
inputs = self.tokenizer(input_text, return_tensors="pt")
|
17 |
+
|
18 |
outputs = self.model.generate(
|
19 |
inputs["input_ids"],
|
20 |
max_length=self.config.max_length,
|
|
|
22 |
top_p=self.config.top_p,
|
23 |
do_sample=True
|
24 |
)
|
25 |
+
|
26 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
src/model/consciousness_model.py
CHANGED
@@ -6,20 +6,21 @@ import numpy as np
|
|
6 |
class ConsciousnessModel(nn.Module):
|
7 |
def __init__(self, config: Dict[str, Any]):
|
8 |
super().__init__()
|
9 |
-
|
|
|
10 |
self.meta_cognitive = nn.Linear(256, 128)
|
11 |
self.phenomenal = nn.Linear(128, 64)
|
12 |
self.integration = nn.Linear(64, 32)
|
13 |
-
|
14 |
def forward(self, x: torch.Tensor) -> Dict[str, Any]:
|
15 |
awareness = torch.relu(self.self_awareness(x))
|
16 |
meta = torch.relu(self.meta_cognitive(awareness))
|
17 |
phenomenal = torch.relu(self.phenomenal(meta))
|
18 |
integrated = self.integration(phenomenal)
|
19 |
-
|
20 |
return {
|
21 |
'awareness': awareness,
|
22 |
'meta_cognitive': meta,
|
23 |
'phenomenal': phenomenal,
|
24 |
'integrated': integrated
|
25 |
-
}
|
|
|
6 |
class ConsciousnessModel(nn.Module):
|
7 |
def __init__(self, config: Dict[str, Any]):
|
8 |
super().__init__()
|
9 |
+
input_dim = config.get('input_dim', 768)
|
10 |
+
self.self_awareness = nn.Linear(input_dim, 256)
|
11 |
self.meta_cognitive = nn.Linear(256, 128)
|
12 |
self.phenomenal = nn.Linear(128, 64)
|
13 |
self.integration = nn.Linear(64, 32)
|
14 |
+
|
15 |
def forward(self, x: torch.Tensor) -> Dict[str, Any]:
|
16 |
awareness = torch.relu(self.self_awareness(x))
|
17 |
meta = torch.relu(self.meta_cognitive(awareness))
|
18 |
phenomenal = torch.relu(self.phenomenal(meta))
|
19 |
integrated = self.integration(phenomenal)
|
20 |
+
|
21 |
return {
|
22 |
'awareness': awareness,
|
23 |
'meta_cognitive': meta,
|
24 |
'phenomenal': phenomenal,
|
25 |
'integrated': integrated
|
26 |
+
}
|
src/model/him_model.py
CHANGED
@@ -15,20 +15,21 @@ class HIMModel(nn.Module):
|
|
15 |
self.emotional_processor = EmotionalProcessor()
|
16 |
self.theory_of_mind = TheoryOfMind()
|
17 |
self.semiotic_processor = SemioticProcessor()
|
18 |
-
|
19 |
async def generate_response(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
|
20 |
consciousness_state = await self.consciousness_kernel.process_consciousness_cycle(input_data)
|
21 |
-
|
22 |
-
|
|
|
23 |
semiotic_analysis = await self.semiotic_processor.process(input_data)
|
24 |
-
|
25 |
return self._integrate_outputs(
|
26 |
consciousness_state,
|
27 |
emotional_context,
|
28 |
social_understanding,
|
29 |
semiotic_analysis
|
30 |
)
|
31 |
-
|
32 |
def _integrate_outputs(self, *states) -> Dict[str, Any]:
|
33 |
# Integration implementation
|
34 |
return {
|
@@ -37,4 +38,4 @@ class HIMModel(nn.Module):
|
|
37 |
"emotional_context": states[1],
|
38 |
"social_understanding": states[2],
|
39 |
"semiotic_analysis": states[3]
|
40 |
-
}
|
|
|
15 |
self.emotional_processor = EmotionalProcessor()
|
16 |
self.theory_of_mind = TheoryOfMind()
|
17 |
self.semiotic_processor = SemioticProcessor()
|
18 |
+
|
19 |
async def generate_response(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
|
20 |
consciousness_state = await self.consciousness_kernel.process_consciousness_cycle(input_data)
|
21 |
+
# Fixed awaitable issues by removing await for non-awaitable methods
|
22 |
+
emotional_context = self.emotional_processor.process_emotional_context(input_data)
|
23 |
+
social_understanding = self.theory_of_mind.model_agent_mind(input_data)
|
24 |
semiotic_analysis = await self.semiotic_processor.process(input_data)
|
25 |
+
|
26 |
return self._integrate_outputs(
|
27 |
consciousness_state,
|
28 |
emotional_context,
|
29 |
social_understanding,
|
30 |
semiotic_analysis
|
31 |
)
|
32 |
+
|
33 |
def _integrate_outputs(self, *states) -> Dict[str, Any]:
|
34 |
# Integration implementation
|
35 |
return {
|
|
|
38 |
"emotional_context": states[1],
|
39 |
"social_understanding": states[2],
|
40 |
"semiotic_analysis": states[3]
|
41 |
+
}
|