TeleologyHI commited on
Commit
c227032
·
1 Parent(s): 87ace7e
Files changed (42) hide show
  1. app.py +4 -4
  2. config/environment_config.py +4 -4
  3. config/model_config.py +6 -6
  4. semiotic_processor.py +37 -38
  5. src/api/__init__.py +1 -1
  6. src/api/chat_endpoint.py +2 -2
  7. src/core/__init__.py +1 -0
  8. src/core/awareness_engine.py +11 -11
  9. src/core/cognitive_microservices.py +40 -6
  10. src/core/consciousness_emergence.py +15 -3
  11. src/core/consciousness_kernel.py +34 -29
  12. src/core/consciousness_matrix.py +11 -3
  13. src/core/consciousness_model.py +17 -7
  14. src/core/consciousness_modules.py +27 -5
  15. src/core/dynamic_self_model.py +10 -3
  16. src/core/emotional_intelligence.py +11 -3
  17. src/core/ethical_framework.py +28 -4
  18. src/core/experience_simulator.py +22 -22
  19. src/core/expert_routing.py +35 -3
  20. src/core/foundation_layer.py +43 -4
  21. src/core/integration_layer.py +24 -6
  22. src/core/integration_manager.py +68 -114
  23. src/core/metacognitive_monitor.py +22 -2
  24. src/core/multimodal_perception.py +56 -4
  25. src/core/ontological_database.py +26 -11
  26. src/core/phi_prime_calculator.py +14 -4
  27. src/core/processing_pipeline.py +23 -2
  28. src/core/reflexive_layer.py +33 -7
  29. src/core/self_evaluation.py +17 -4
  30. src/core/self_evolution.py +27 -5
  31. src/core/semiotic_network.py +36 -4
  32. src/core/semiotic_processor.py +40 -40
  33. src/core/sign_interpreter.py +24 -3
  34. src/core/social_dynamics.py +33 -4
  35. src/core/sparse_activation.py +28 -3
  36. src/core/theory_of_mind.py +11 -11
  37. src/core/topology_aware_router.py +21 -4
  38. src/hardware/memory_hierarchy.py +42 -4
  39. src/hardware/neural_processing_unit.py +16 -2
  40. src/model.py +6 -6
  41. src/model/consciousness_model.py +5 -4
  42. src/model/him_model.py +7 -6
app.py CHANGED
@@ -9,15 +9,15 @@ def initialize_model():
9
  model_config = HIMConfig()
10
  env_config = EnvironmentConfig()
11
  device = torch.device("cuda" if torch.cuda.is_available() and env_config.device == "cuda" else "cpu")
12
- model = HIMModel(model_config).to(device)
13
  return model
14
 
15
- async def chat(message: str,
16
  system_message: str = "You are a friendly Chatbot.",
17
  max_tokens: int = 512,
18
  temperature: float = 0.7,
19
  top_p: float = 0.95):
20
-
21
  input_data = {
22
  "message": message,
23
  "system_message": system_message,
@@ -27,7 +27,7 @@ async def chat(message: str,
27
  "top_p": top_p
28
  }
29
  }
30
-
31
  with torch.no_grad():
32
  result = await model.generate_response(input_data)
33
  return result["response"]
 
9
  model_config = HIMConfig()
10
  env_config = EnvironmentConfig()
11
  device = torch.device("cuda" if torch.cuda.is_available() and env_config.device == "cuda" else "cpu")
12
+ model = HIMModel(model_config.to_dict()).to(device)
13
  return model
14
 
15
+ async def chat(message: str,
16
  system_message: str = "You are a friendly Chatbot.",
17
  max_tokens: int = 512,
18
  temperature: float = 0.7,
19
  top_p: float = 0.95):
20
+
21
  input_data = {
22
  "message": message,
23
  "system_message": system_message,
 
27
  "top_p": top_p
28
  }
29
  }
30
+
31
  with torch.no_grad():
32
  result = await model.generate_response(input_data)
33
  return result["response"]
config/environment_config.py CHANGED
@@ -6,18 +6,18 @@ class EnvironmentConfig:
6
  # Hugging Face configuration
7
  hf_model_path: str = "TeleologyHI/HIM-self"
8
  hf_token: Optional[str] = None
9
-
10
  # Hardware configuration
11
  device: str = "cuda"
12
  num_gpus: int = 1
13
  mixed_precision: bool = True
14
-
15
  # Logging configuration
16
  log_level: str = "INFO"
17
  enable_wandb: bool = False
18
  wandb_project: str = "HIM-self"
19
-
20
  # API configuration
21
  api_host: str = "0.0.0.0"
22
  api_port: int = 7860
23
- enable_cors: bool = True
 
6
  # Hugging Face configuration
7
  hf_model_path: str = "TeleologyHI/HIM-self"
8
  hf_token: Optional[str] = None
9
+
10
  # Hardware configuration
11
  device: str = "cuda"
12
  num_gpus: int = 1
13
  mixed_precision: bool = True
14
+
15
  # Logging configuration
16
  log_level: str = "INFO"
17
  enable_wandb: bool = False
18
  wandb_project: str = "HIM-self"
19
+
20
  # API configuration
21
  api_host: str = "0.0.0.0"
22
  api_port: int = 7860
23
+ enable_cors: bool = True
config/model_config.py CHANGED
@@ -9,33 +9,33 @@ class HIMConfig:
9
  max_length: int = 512
10
  temperature: float = 0.7
11
  top_p: float = 0.95
12
-
13
  # Consciousness parameters
14
  self_awareness_level: float = 0.8
15
  ethical_reasoning_weight: float = 0.9
16
  symbolic_interpretation_capacity: float = 0.85
17
  consciousness_dimension: int = 768
18
  attention_heads: int = 12
19
-
20
  # Teleological parameters
21
  purpose_driven_bias: float = 0.75
22
  spiritual_awareness: float = 0.8
23
  meaning_dimension: int = 256
24
-
25
  # Training configuration
26
  batch_size: int = 8
27
  learning_rate: float = 2e-5
28
  num_train_epochs: int = 3
29
  gradient_accumulation_steps: int = 1
30
  warmup_steps: int = 500
31
-
32
  # Architecture configuration
33
  hidden_size: int = 768
34
  intermediate_size: int = 3072
35
  num_hidden_layers: int = 12
36
  num_attention_heads: int = 12
37
-
38
  # Memory configuration
39
  memory_size: int = 1024
40
  context_length: int = 2048
41
- cache_size: int = 512
 
9
  max_length: int = 512
10
  temperature: float = 0.7
11
  top_p: float = 0.95
12
+
13
  # Consciousness parameters
14
  self_awareness_level: float = 0.8
15
  ethical_reasoning_weight: float = 0.9
16
  symbolic_interpretation_capacity: float = 0.85
17
  consciousness_dimension: int = 768
18
  attention_heads: int = 12
19
+
20
  # Teleological parameters
21
  purpose_driven_bias: float = 0.75
22
  spiritual_awareness: float = 0.8
23
  meaning_dimension: int = 256
24
+
25
  # Training configuration
26
  batch_size: int = 8
27
  learning_rate: float = 2e-5
28
  num_train_epochs: int = 3
29
  gradient_accumulation_steps: int = 1
30
  warmup_steps: int = 500
31
+
32
  # Architecture configuration
33
  hidden_size: int = 768
34
  intermediate_size: int = 3072
35
  num_hidden_layers: int = 12
36
  num_attention_heads: int = 12
37
+
38
  # Memory configuration
39
  memory_size: int = 1024
40
  context_length: int = 2048
41
+ cache_size: int = 512
semiotic_processor.py CHANGED
@@ -34,7 +34,7 @@ class SemioticState:
34
 
35
  class SemioticNetworkBuilder:
36
  """Builds semiotic networks from input data, representing sign relationships."""
37
-
38
  def __init__(self):
39
  self.relation_encoder = nn.Sequential(
40
  nn.Linear(768, 256),
@@ -42,28 +42,28 @@ class SemioticNetworkBuilder:
42
  nn.Linear(256, 128)
43
  )
44
  self.graph_state = {}
45
-
46
  def construct(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
47
  """
48
  Construct a semiotic network from input data.
49
-
50
  Args:
51
  input_data: Dictionary containing sign and context information
52
-
53
  Returns:
54
  Dictionary containing the constructed semiotic network
55
  """
56
  encoded_signs = self._encode_signs(input_data.get("signs", []))
57
  context_embedding = self._process_context(input_data.get("context", {}))
58
  relations = self._build_relations(encoded_signs, context_embedding)
59
-
60
  return {
61
  "signs": encoded_signs,
62
  "context": context_embedding,
63
  "relations": relations,
64
  "meta_info": self._extract_meta_information(input_data)
65
  }
66
-
67
  def _encode_signs(self, signs: List[Any]) -> Dict[str, torch.Tensor]:
68
  """Encode individual signs into vector representations."""
69
  encoded = {}
@@ -71,12 +71,12 @@ class SemioticNetworkBuilder:
71
  sign_tensor = torch.randn(768) # Placeholder for actual encoding
72
  encoded[str(sign)] = self.relation_encoder(sign_tensor)
73
  return encoded
74
-
75
  def _process_context(self, context: Dict[str, Any]) -> torch.Tensor:
76
  """Process context information into an embedding."""
77
  # Placeholder implementation
78
  return torch.randn(128)
79
-
80
  def _build_relations(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, float]:
81
  """Build relationships between signs in the context."""
82
  relations = {}
@@ -86,7 +86,7 @@ class SemioticNetworkBuilder:
86
  relation_strength = torch.cosine_similarity(signs[sign1], signs[sign2], dim=0)
87
  relations[f"{sign1}-{sign2}"] = float(relation_strength)
88
  return relations
89
-
90
  def _extract_meta_information(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
91
  """Extract meta-information about the semiotic network."""
92
  return {
@@ -96,89 +96,89 @@ class SemioticNetworkBuilder:
96
 
97
  class SignInterpreter:
98
  """Interprets semiotic networks to extract meaning and relationships."""
99
-
100
  def __init__(self):
101
  self.interpretation_network = nn.Sequential(
102
  nn.Linear(128, 64),
103
  nn.ReLU(),
104
  nn.Linear(64, 32)
105
  )
106
-
107
  def interpret(self, network: Dict[str, Any]) -> Dict[str, Any]:
108
  """
109
  Interpret a semiotic network to extract meaningful patterns.
110
-
111
  Args:
112
  network: The semiotic network to interpret
113
-
114
  Returns:
115
  Dictionary containing interpretation results
116
  """
117
  signs = network["signs"]
118
  relations = network["relations"]
119
  context = network["context"]
120
-
121
  interpreted_meanings = self._interpret_meanings(signs, context)
122
  relation_patterns = self._analyze_relations(relations)
123
  contextual_insights = self._extract_contextual_insights(context)
124
-
125
  return {
126
  "meanings": interpreted_meanings,
127
  "patterns": relation_patterns,
128
  "contextual_insights": contextual_insights
129
  }
130
-
131
  def _interpret_meanings(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, Any]:
132
  """Extract meanings from signs in context."""
133
  return {sign: {"salience": 0.8, "certainty": 0.7} for sign in signs}
134
-
135
  def _analyze_relations(self, relations: Dict[str, float]) -> Dict[str, float]:
136
  """Analyze patterns in sign relations."""
137
  return {"coherence": 0.8, "complexity": 0.6}
138
-
139
  def _extract_contextual_insights(self, context: torch.Tensor) -> Dict[str, float]:
140
  """Extract insights from contextual information."""
141
  return {"relevance": 0.75, "specificity": 0.65}
142
 
143
  class SignGenerator:
144
  """Generates new signs based on interpretations and patterns."""
145
-
146
  def __init__(self):
147
  self.generator_network = nn.Sequential(
148
  nn.Linear(32, 64),
149
  nn.ReLU(),
150
  nn.Linear(64, 128)
151
  )
152
-
153
  def create_signs(self, interpretation: Dict[str, Any]) -> Dict[str, Any]:
154
  """
155
  Generate new signs based on interpretation.
156
-
157
  Args:
158
  interpretation: The interpretation to base generation on
159
-
160
  Returns:
161
  Dictionary containing generated signs and their properties
162
  """
163
  meanings = interpretation["meanings"]
164
  patterns = interpretation["patterns"]
165
-
166
  generated = self._generate_from_patterns(patterns)
167
  refined = self._refine_generated_signs(generated, meanings)
168
-
169
  return {
170
  "signs": refined,
171
  "confidence": self._assess_generation_quality(refined)
172
  }
173
-
174
  def _generate_from_patterns(self, patterns: Dict[str, float]) -> List[torch.Tensor]:
175
  """Generate initial signs from observed patterns."""
176
  return [torch.randn(128) for _ in range(3)] # Generate 3 new signs
177
-
178
  def _refine_generated_signs(self, signs: List[torch.Tensor], meanings: Dict[str, Any]) -> List[Dict[str, Any]]:
179
  """Refine generated signs based on existing meanings."""
180
  return [{"vector": sign, "quality": 0.7} for sign in signs]
181
-
182
  def _assess_generation_quality(self, signs: List[Dict[str, Any]]) -> float:
183
  """Assess the quality of generated signs."""
184
  return sum(sign["quality"] for sign in signs) / len(signs)
@@ -193,41 +193,41 @@ class SemioticProcessor:
193
  self.network_builder = SemioticNetworkBuilder()
194
  self.interpreter = SignInterpreter()
195
  self.generator = SignGenerator()
196
-
197
  async def process(self, input_data: Dict[str, Any]) -> SemioticState:
198
  # Build semiotic network
199
  network = self.network_builder.construct(input_data)
200
-
201
  # Interpret the network
202
  interpretation = self.interpreter.interpret(network)
203
-
204
  # Generate new signs if needed
205
  if self._requires_generation(interpretation):
206
  generated_signs = self.generator.create_signs(interpretation)
207
  return self._integrate_semiotic_state(interpretation, generated_signs)
208
-
209
  return self._create_semiotic_state(interpretation)
210
-
211
  def _requires_generation(self, interpretation: Dict[str, Any]) -> bool:
212
  """
213
  Determine if new sign generation is required based on interpretation.
214
-
215
  Args:
216
  interpretation: The current interpretation state
217
-
218
  Returns:
219
  Boolean indicating if generation is needed
220
  """
221
  patterns = interpretation.get("patterns", {})
222
  return patterns.get("coherence", 0) < 0.5 or len(interpretation.get("meanings", {})) < 3
223
-
224
  def _integrate_semiotic_state(self, interpretation: Dict[str, Any], generated_signs: Dict[str, Any]) -> SemioticState:
225
  """
226
  Integrate interpretation and generated signs into a semiotic state.
227
  """
228
  meaning_vector = np.random.rand(128) # Placeholder for actual meaning vector
229
  sign_vector = np.random.rand(128) # Placeholder for actual sign vector
230
-
231
  return SemioticState(
232
  sign_level=SignLevel.SEMANTIC,
233
  meaning_vector=meaning_vector,
@@ -237,8 +237,7 @@ class SemioticProcessor:
237
  context_embedding=np.random.rand(128),
238
  semantic_relations=interpretation.get("contextual_insights", {})
239
  )
240
-
241
  def _create_semiotic_state(self, interpretation: Dict[str, Any]) -> SemioticState:
242
  """Create a semiotic state from interpretation without generation."""
243
  return self._integrate_semiotic_state(interpretation, {"confidence": 0.8})
244
-
 
34
 
35
  class SemioticNetworkBuilder:
36
  """Builds semiotic networks from input data, representing sign relationships."""
37
+
38
  def __init__(self):
39
  self.relation_encoder = nn.Sequential(
40
  nn.Linear(768, 256),
 
42
  nn.Linear(256, 128)
43
  )
44
  self.graph_state = {}
45
+
46
  def construct(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
47
  """
48
  Construct a semiotic network from input data.
49
+
50
  Args:
51
  input_data: Dictionary containing sign and context information
52
+
53
  Returns:
54
  Dictionary containing the constructed semiotic network
55
  """
56
  encoded_signs = self._encode_signs(input_data.get("signs", []))
57
  context_embedding = self._process_context(input_data.get("context", {}))
58
  relations = self._build_relations(encoded_signs, context_embedding)
59
+
60
  return {
61
  "signs": encoded_signs,
62
  "context": context_embedding,
63
  "relations": relations,
64
  "meta_info": self._extract_meta_information(input_data)
65
  }
66
+
67
  def _encode_signs(self, signs: List[Any]) -> Dict[str, torch.Tensor]:
68
  """Encode individual signs into vector representations."""
69
  encoded = {}
 
71
  sign_tensor = torch.randn(768) # Placeholder for actual encoding
72
  encoded[str(sign)] = self.relation_encoder(sign_tensor)
73
  return encoded
74
+
75
  def _process_context(self, context: Dict[str, Any]) -> torch.Tensor:
76
  """Process context information into an embedding."""
77
  # Placeholder implementation
78
  return torch.randn(128)
79
+
80
  def _build_relations(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, float]:
81
  """Build relationships between signs in the context."""
82
  relations = {}
 
86
  relation_strength = torch.cosine_similarity(signs[sign1], signs[sign2], dim=0)
87
  relations[f"{sign1}-{sign2}"] = float(relation_strength)
88
  return relations
89
+
90
  def _extract_meta_information(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
91
  """Extract meta-information about the semiotic network."""
92
  return {
 
96
 
97
  class SignInterpreter:
98
  """Interprets semiotic networks to extract meaning and relationships."""
99
+
100
  def __init__(self):
101
  self.interpretation_network = nn.Sequential(
102
  nn.Linear(128, 64),
103
  nn.ReLU(),
104
  nn.Linear(64, 32)
105
  )
106
+
107
  def interpret(self, network: Dict[str, Any]) -> Dict[str, Any]:
108
  """
109
  Interpret a semiotic network to extract meaningful patterns.
110
+
111
  Args:
112
  network: The semiotic network to interpret
113
+
114
  Returns:
115
  Dictionary containing interpretation results
116
  """
117
  signs = network["signs"]
118
  relations = network["relations"]
119
  context = network["context"]
120
+
121
  interpreted_meanings = self._interpret_meanings(signs, context)
122
  relation_patterns = self._analyze_relations(relations)
123
  contextual_insights = self._extract_contextual_insights(context)
124
+
125
  return {
126
  "meanings": interpreted_meanings,
127
  "patterns": relation_patterns,
128
  "contextual_insights": contextual_insights
129
  }
130
+
131
  def _interpret_meanings(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, Any]:
132
  """Extract meanings from signs in context."""
133
  return {sign: {"salience": 0.8, "certainty": 0.7} for sign in signs}
134
+
135
  def _analyze_relations(self, relations: Dict[str, float]) -> Dict[str, float]:
136
  """Analyze patterns in sign relations."""
137
  return {"coherence": 0.8, "complexity": 0.6}
138
+
139
  def _extract_contextual_insights(self, context: torch.Tensor) -> Dict[str, float]:
140
  """Extract insights from contextual information."""
141
  return {"relevance": 0.75, "specificity": 0.65}
142
 
143
  class SignGenerator:
144
  """Generates new signs based on interpretations and patterns."""
145
+
146
  def __init__(self):
147
  self.generator_network = nn.Sequential(
148
  nn.Linear(32, 64),
149
  nn.ReLU(),
150
  nn.Linear(64, 128)
151
  )
152
+
153
  def create_signs(self, interpretation: Dict[str, Any]) -> Dict[str, Any]:
154
  """
155
  Generate new signs based on interpretation.
156
+
157
  Args:
158
  interpretation: The interpretation to base generation on
159
+
160
  Returns:
161
  Dictionary containing generated signs and their properties
162
  """
163
  meanings = interpretation["meanings"]
164
  patterns = interpretation["patterns"]
165
+
166
  generated = self._generate_from_patterns(patterns)
167
  refined = self._refine_generated_signs(generated, meanings)
168
+
169
  return {
170
  "signs": refined,
171
  "confidence": self._assess_generation_quality(refined)
172
  }
173
+
174
  def _generate_from_patterns(self, patterns: Dict[str, float]) -> List[torch.Tensor]:
175
  """Generate initial signs from observed patterns."""
176
  return [torch.randn(128) for _ in range(3)] # Generate 3 new signs
177
+
178
  def _refine_generated_signs(self, signs: List[torch.Tensor], meanings: Dict[str, Any]) -> List[Dict[str, Any]]:
179
  """Refine generated signs based on existing meanings."""
180
  return [{"vector": sign, "quality": 0.7} for sign in signs]
181
+
182
  def _assess_generation_quality(self, signs: List[Dict[str, Any]]) -> float:
183
  """Assess the quality of generated signs."""
184
  return sum(sign["quality"] for sign in signs) / len(signs)
 
193
  self.network_builder = SemioticNetworkBuilder()
194
  self.interpreter = SignInterpreter()
195
  self.generator = SignGenerator()
196
+
197
  async def process(self, input_data: Dict[str, Any]) -> SemioticState:
198
  # Build semiotic network
199
  network = self.network_builder.construct(input_data)
200
+
201
  # Interpret the network
202
  interpretation = self.interpreter.interpret(network)
203
+
204
  # Generate new signs if needed
205
  if self._requires_generation(interpretation):
206
  generated_signs = self.generator.create_signs(interpretation)
207
  return self._integrate_semiotic_state(interpretation, generated_signs)
208
+
209
  return self._create_semiotic_state(interpretation)
210
+
211
  def _requires_generation(self, interpretation: Dict[str, Any]) -> bool:
212
  """
213
  Determine if new sign generation is required based on interpretation.
214
+
215
  Args:
216
  interpretation: The current interpretation state
217
+
218
  Returns:
219
  Boolean indicating if generation is needed
220
  """
221
  patterns = interpretation.get("patterns", {})
222
  return patterns.get("coherence", 0) < 0.5 or len(interpretation.get("meanings", {})) < 3
223
+
224
  def _integrate_semiotic_state(self, interpretation: Dict[str, Any], generated_signs: Dict[str, Any]) -> SemioticState:
225
  """
226
  Integrate interpretation and generated signs into a semiotic state.
227
  """
228
  meaning_vector = np.random.rand(128) # Placeholder for actual meaning vector
229
  sign_vector = np.random.rand(128) # Placeholder for actual sign vector
230
+
231
  return SemioticState(
232
  sign_level=SignLevel.SEMANTIC,
233
  meaning_vector=meaning_vector,
 
237
  context_embedding=np.random.rand(128),
238
  semantic_relations=interpretation.get("contextual_insights", {})
239
  )
240
+
241
  def _create_semiotic_state(self, interpretation: Dict[str, Any]) -> SemioticState:
242
  """Create a semiotic state from interpretation without generation."""
243
  return self._integrate_semiotic_state(interpretation, {"confidence": 0.8})
 
src/api/__init__.py CHANGED
@@ -1 +1 @@
1
- from .chat_endpoint import chat_router
 
1
+ from .chat_endpoint import chat_router
src/api/chat_endpoint.py CHANGED
@@ -23,6 +23,6 @@ async def chat(
23
  "top_p": top_p
24
  }
25
  }
26
-
27
  response = await model.generate_response(input_data)
28
- return response
 
23
  "top_p": top_p
24
  }
25
  }
26
+
27
  response = await model.generate_response(input_data)
28
+ return response
src/core/__init__.py CHANGED
@@ -0,0 +1 @@
 
 
1
+
src/core/awareness_engine.py CHANGED
@@ -11,18 +11,18 @@ class AwarenessEngine:
11
  nn.ReLU(),
12
  nn.Linear(512, 256)
13
  )
14
-
15
  async def process(self, input_state: Dict[str, Any]) -> AwarenessState:
16
  attention_vector = self._compute_attention(input_state)
17
  awareness_level = self._calculate_awareness(attention_vector)
18
  level = self._determine_awareness_level(awareness_level)
19
-
20
  cognitive_state = {
21
  "attention_focus": self._compute_attention_focus(attention_vector),
22
  "processing_depth": awareness_level,
23
  "cognitive_load": self._estimate_cognitive_load(input_state)
24
  }
25
-
26
  return AwarenessState(
27
  attention_vector=attention_vector.detach().numpy(),
28
  awareness_level=awareness_level,
@@ -31,13 +31,13 @@ class AwarenessEngine:
31
  consciousness_level=0.8,
32
  level=level
33
  )
34
-
35
  def _compute_attention_focus(self, attention_vector: torch.Tensor) -> float:
36
  return float(torch.mean(attention_vector))
37
-
38
  def _estimate_cognitive_load(self, input_state: Dict[str, Any]) -> float:
39
  return 0.5 # Default mid-range load
40
-
41
  def _determine_awareness_level(self, awareness_level: float) -> AwarenessLevel:
42
  if awareness_level > 0.8:
43
  return AwarenessLevel.TRANSCENDENT
@@ -48,15 +48,15 @@ class AwarenessEngine:
48
  elif awareness_level > 0.2:
49
  return AwarenessLevel.PERCEPTUAL
50
  return AwarenessLevel.BASIC
51
-
52
  def _compute_attention(self, input_state: Dict[str, Any]) -> torch.Tensor:
53
  return torch.ones(256)
54
-
55
  def _calculate_awareness(self, attention_vector: torch.Tensor) -> float:
56
  return 0.8
57
-
58
  def _process_cognitive_state(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
59
  return {"state": "active", "focus_level": 0.9}
60
-
61
  def _compute_emotional_valence(self, input_state: Dict[str, Any]) -> float:
62
- return 0.5
 
11
  nn.ReLU(),
12
  nn.Linear(512, 256)
13
  )
14
+
15
  async def process(self, input_state: Dict[str, Any]) -> AwarenessState:
16
  attention_vector = self._compute_attention(input_state)
17
  awareness_level = self._calculate_awareness(attention_vector)
18
  level = self._determine_awareness_level(awareness_level)
19
+
20
  cognitive_state = {
21
  "attention_focus": self._compute_attention_focus(attention_vector),
22
  "processing_depth": awareness_level,
23
  "cognitive_load": self._estimate_cognitive_load(input_state)
24
  }
25
+
26
  return AwarenessState(
27
  attention_vector=attention_vector.detach().numpy(),
28
  awareness_level=awareness_level,
 
31
  consciousness_level=0.8,
32
  level=level
33
  )
34
+
35
  def _compute_attention_focus(self, attention_vector: torch.Tensor) -> float:
36
  return float(torch.mean(attention_vector))
37
+
38
  def _estimate_cognitive_load(self, input_state: Dict[str, Any]) -> float:
39
  return 0.5 # Default mid-range load
40
+
41
  def _determine_awareness_level(self, awareness_level: float) -> AwarenessLevel:
42
  if awareness_level > 0.8:
43
  return AwarenessLevel.TRANSCENDENT
 
48
  elif awareness_level > 0.2:
49
  return AwarenessLevel.PERCEPTUAL
50
  return AwarenessLevel.BASIC
51
+
52
  def _compute_attention(self, input_state: Dict[str, Any]) -> torch.Tensor:
53
  return torch.ones(256)
54
+
55
  def _calculate_awareness(self, attention_vector: torch.Tensor) -> float:
56
  return 0.8
57
+
58
  def _process_cognitive_state(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
59
  return {"state": "active", "focus_level": 0.9}
60
+
61
  def _compute_emotional_valence(self, input_state: Dict[str, Any]) -> float:
62
+ return 0.5
src/core/cognitive_microservices.py CHANGED
@@ -2,6 +2,11 @@ from enum import Enum
2
  from typing import Dict, Any, List
3
  import asyncio
4
 
 
 
 
 
 
5
  class ServiceType(Enum):
6
  PERCEPTION = "perception"
7
  REASONING = "reasoning"
@@ -15,26 +20,55 @@ class CognitiveMicroservice:
15
  self.state = {}
16
  self.connections = []
17
  self.ontology = OntologicalDatabase()
18
-
19
  async def process(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
20
  preprocessed = await self._preprocess(input_data)
21
  result = await self._core_processing(preprocessed)
22
  return await self._postprocess(result)
23
-
24
  async def _preprocess(self, data: Dict[str, Any]) -> Dict[str, Any]:
25
  # Service-specific preprocessing
26
- pass
 
 
 
 
 
 
 
 
27
 
28
  class CognitiveOrchestrator:
29
  def __init__(self):
30
  self.services: Dict[ServiceType, List[CognitiveMicroservice]] = {}
31
  self.routing_table = {}
32
  self._initialize_services()
33
-
34
  async def process_cognitive_task(self, task: Dict[str, Any]) -> Dict[str, Any]:
35
  service_chain = self._determine_service_chain(task)
36
  return await self._execute_service_chain(service_chain, task)
37
-
38
  def _determine_service_chain(self, task: Dict[str, Any]) -> List[ServiceType]:
39
  task_type = task.get('type', 'general')
40
- return self.routing_table.get(task_type, self._default_chain())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  from typing import Dict, Any, List
3
  import asyncio
4
 
5
+ class OntologicalDatabase:
6
+ """A database for ontological information."""
7
+ def __init__(self):
8
+ self.data = {}
9
+
10
  class ServiceType(Enum):
11
  PERCEPTION = "perception"
12
  REASONING = "reasoning"
 
20
  self.state = {}
21
  self.connections = []
22
  self.ontology = OntologicalDatabase()
23
+
24
  async def process(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
25
  preprocessed = await self._preprocess(input_data)
26
  result = await self._core_processing(preprocessed)
27
  return await self._postprocess(result)
28
+
29
  async def _preprocess(self, data: Dict[str, Any]) -> Dict[str, Any]:
30
  # Service-specific preprocessing
31
+ return data
32
+
33
+ async def _core_processing(self, data: Dict[str, Any]) -> Dict[str, Any]:
34
+ # Core processing logic
35
+ return data
36
+
37
+ async def _postprocess(self, data: Dict[str, Any]) -> Dict[str, Any]:
38
+ # Post processing logic
39
+ return data
40
 
41
  class CognitiveOrchestrator:
42
  def __init__(self):
43
  self.services: Dict[ServiceType, List[CognitiveMicroservice]] = {}
44
  self.routing_table = {}
45
  self._initialize_services()
46
+
47
  async def process_cognitive_task(self, task: Dict[str, Any]) -> Dict[str, Any]:
48
  service_chain = self._determine_service_chain(task)
49
  return await self._execute_service_chain(service_chain, task)
50
+
51
  def _determine_service_chain(self, task: Dict[str, Any]) -> List[ServiceType]:
52
  task_type = task.get('type', 'general')
53
+ return self.routing_table.get(task_type, self._default_chain())
54
+
55
+ def _initialize_services(self):
56
+ # Initialize cognitive services
57
+ for service_type in ServiceType:
58
+ self.services[service_type] = []
59
+
60
+ # Set up default routing
61
+ self.routing_table = {}
62
+
63
+ async def _execute_service_chain(self, service_chain: List[ServiceType],
64
+ task: Dict[str, Any]) -> Dict[str, Any]:
65
+ result = task
66
+ for service_type in service_chain:
67
+ if service_type in self.services and self.services[service_type]:
68
+ service = self.services[service_type][0] # Use first available service
69
+ result = await service.process(result)
70
+ return result
71
+
72
+ def _default_chain(self) -> List[ServiceType]:
73
+ # Default processing chain
74
+ return [ServiceType.PERCEPTION, ServiceType.REASONING]
src/core/consciousness_emergence.py CHANGED
@@ -1,7 +1,7 @@
1
  from enum import Enum
2
  from dataclasses import dataclass
3
  import numpy as np
4
- from typing import Dict, List, Optional
5
 
6
  class ConsciousnessPhase(Enum):
7
  PROTO = "proto_consciousness"
@@ -22,9 +22,21 @@ class ConsciousnessEmergence:
22
  self.phase_history = []
23
  self.awareness_threshold = 0.7
24
  self.integration_threshold = 0.8
25
-
26
  def evaluate_phase_transition(self, system_state: Dict[str, Any]) -> Optional[ConsciousnessPhase]:
27
  current_metrics = self._compute_phase_metrics(system_state)
28
  if self._should_transition(current_metrics):
29
  return self._determine_next_phase(current_metrics)
30
- return None
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  from enum import Enum
2
  from dataclasses import dataclass
3
  import numpy as np
4
+ from typing import Dict, List, Optional, Any
5
 
6
  class ConsciousnessPhase(Enum):
7
  PROTO = "proto_consciousness"
 
22
  self.phase_history = []
23
  self.awareness_threshold = 0.7
24
  self.integration_threshold = 0.8
25
+
26
  def evaluate_phase_transition(self, system_state: Dict[str, Any]) -> Optional[ConsciousnessPhase]:
27
  current_metrics = self._compute_phase_metrics(system_state)
28
  if self._should_transition(current_metrics):
29
  return self._determine_next_phase(current_metrics)
30
+ return None
31
+
32
+ def _compute_phase_metrics(self, system_state: Dict[str, Any]) -> Dict[str, float]:
33
+ # Implementation needed
34
+ return {}
35
+
36
+ def _should_transition(self, metrics: Dict[str, float]) -> bool:
37
+ # Implementation needed
38
+ return False
39
+
40
+ def _determine_next_phase(self, metrics: Dict[str, float]) -> ConsciousnessPhase:
41
+ # Implementation needed
42
+ return self.current_phase
src/core/consciousness_kernel.py CHANGED
@@ -31,7 +31,7 @@ class MetaMonitor:
31
  return {"self_reflection": 0.6, "uncertainty": 0.2}
32
 
33
  class PhenomenologicalSimulator:
34
- async def simulate(self, phi_value: float, attention_state: Dict[str, float],
35
  meta_state: Dict[str, Any]) -> Dict[str, Any]:
36
  """Simulate the phenomenological experience based on input parameters."""
37
  # Placeholder implementation
@@ -66,55 +66,60 @@ class ConsciousnessKernel:
66
  nn.Linear(512, 256)
67
  )
68
  self.integration_module = nn.Linear(256, 128)
69
-
70
  # State tracking
71
  self.state_history: List[ConsciousnessState] = []
72
-
73
  # Dimension parameters
74
  self.awareness_dimension: int = 256
75
  self.emotional_dimension: int = 64
76
-
77
  # Core components
78
  self.awareness_engine = AwarenessEngine()
79
  self.integration_manager = IntegrationManager()
80
  self.self_model = DynamicSelfModel()
81
  self.experience_simulator = ExperienceSimulator()
82
-
83
  # For traditional consciousness processing
84
  self.phi_prime_calculator = PhiPrimeCalculator()
85
  self.attention_system = AttentionSystem()
86
  self.meta_monitor = MetaMonitor()
87
  self.phenomenological_simulator = PhenomenologicalSimulator()
88
-
89
  async def process_consciousness_cycle(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
90
  """
91
  Process a complete consciousness cycle using the async components.
92
-
93
  Args:
94
  input_state: The input state containing sensory and contextual information
95
-
96
  Returns:
97
  A dictionary containing the processed conscious output
98
  """
99
  awareness = await self.awareness_engine.process(input_state)
100
- integrated_state = await self.integration_manager.integrate(awareness)
101
- self_update = await self.self_model.update(integrated_state)
102
-
 
 
 
 
 
103
  experience = await self.experience_simulator.simulate(
104
- awareness=awareness,
105
- integrated_state=integrated_state,
106
  self_model=self_update
107
  )
108
-
109
  # Record the state for historical tracking
110
  if isinstance(integrated_state, ConsciousnessState):
111
  self.state_history.append(integrated_state)
112
-
113
  return await self._generate_conscious_output(experience)
114
  def _initialize_consciousness_state(self) -> ConsciousnessState:
115
  """
116
  Initialize a default consciousness state with zero values.
117
-
118
  Returns:
119
  A default ConsciousnessState object
120
  """
@@ -126,37 +131,37 @@ class ConsciousnessKernel:
126
  attention_focus={},
127
  temporal_continuity=0.0
128
  )
129
-
130
  async def process_consciousness(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
131
  """
132
  Process consciousness using the traditional phi-based approach.
133
  This is an alternative to process_consciousness_cycle that uses different components.
134
-
135
  Args:
136
  input_state: The input state containing sensory and contextual information
137
-
138
  Returns:
139
  A dictionary containing the processed conscious output
140
  """
141
  phi_value = await self.phi_prime_calculator.compute(input_state)
142
  attention_state = await self.attention_system.allocate(input_state)
143
  meta_state = await self.meta_monitor.evaluate(input_state)
144
-
145
  phenomenological_experience = await self.phenomenological_simulator.simulate(
146
  phi_value,
147
  attention_state,
148
  meta_state
149
  )
150
-
151
  return await self._integrate_consciousness_state(phenomenological_experience)
152
-
153
  async def _generate_conscious_output(self, experience: Dict[str, Any]) -> Dict[str, Any]:
154
  """
155
  Generate the final conscious output based on the simulated experience.
156
-
157
  Args:
158
  experience: The simulated experience data
159
-
160
  Returns:
161
  A dictionary containing the final conscious output
162
  """
@@ -168,16 +173,16 @@ class ConsciousnessKernel:
168
  "phenomenal_qualities": experience.get("qualia", {}),
169
  "teleological_vector": experience.get("purpose_direction", {})
170
  }
171
-
172
  return output
173
-
174
  async def _integrate_consciousness_state(self, experience: Dict[str, Any]) -> Dict[str, Any]:
175
  """
176
  Integrate a phenomenological experience into a consciousness state.
177
-
178
  Args:
179
  experience: The phenomenological experience to integrate
180
-
181
  Returns:
182
  A dictionary containing the integrated consciousness state
183
  """
@@ -191,5 +196,5 @@ class ConsciousnessKernel:
191
  "qualia_map": experience.get("qualia", {}),
192
  "response": experience.get("content", "")
193
  }
194
-
195
  return integrated_output
 
31
  return {"self_reflection": 0.6, "uncertainty": 0.2}
32
 
33
  class PhenomenologicalSimulator:
34
+ async def simulate(self, phi_value: float, attention_state: Dict[str, float],
35
  meta_state: Dict[str, Any]) -> Dict[str, Any]:
36
  """Simulate the phenomenological experience based on input parameters."""
37
  # Placeholder implementation
 
66
  nn.Linear(512, 256)
67
  )
68
  self.integration_module = nn.Linear(256, 128)
69
+
70
  # State tracking
71
  self.state_history: List[ConsciousnessState] = []
72
+
73
  # Dimension parameters
74
  self.awareness_dimension: int = 256
75
  self.emotional_dimension: int = 64
76
+
77
  # Core components
78
  self.awareness_engine = AwarenessEngine()
79
  self.integration_manager = IntegrationManager()
80
  self.self_model = DynamicSelfModel()
81
  self.experience_simulator = ExperienceSimulator()
82
+
83
  # For traditional consciousness processing
84
  self.phi_prime_calculator = PhiPrimeCalculator()
85
  self.attention_system = AttentionSystem()
86
  self.meta_monitor = MetaMonitor()
87
  self.phenomenological_simulator = PhenomenologicalSimulator()
88
+
89
  async def process_consciousness_cycle(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
90
  """
91
  Process a complete consciousness cycle using the async components.
92
+
93
  Args:
94
  input_state: The input state containing sensory and contextual information
95
+
96
  Returns:
97
  A dictionary containing the processed conscious output
98
  """
99
  awareness = await self.awareness_engine.process(input_state)
100
+ # Convert awareness to a Dict[str, Any] before passing to integrate
101
+ awareness_dict = awareness if isinstance(awareness, dict) else awareness.__dict__
102
+ integrated_state = await self.integration_manager.integrate(awareness_dict)
103
+
104
+ # Convert integrated_state to Dict[str, Any] before passing to update
105
+ integrated_dict = integrated_state if isinstance(integrated_state, dict) else integrated_state.__dict__
106
+ self_update = await self.self_model.update(integrated_dict)
107
+
108
  experience = await self.experience_simulator.simulate(
109
+ awareness=awareness_dict,
110
+ integrated_state=integrated_dict,
111
  self_model=self_update
112
  )
113
+
114
  # Record the state for historical tracking
115
  if isinstance(integrated_state, ConsciousnessState):
116
  self.state_history.append(integrated_state)
117
+
118
  return await self._generate_conscious_output(experience)
119
  def _initialize_consciousness_state(self) -> ConsciousnessState:
120
  """
121
  Initialize a default consciousness state with zero values.
122
+
123
  Returns:
124
  A default ConsciousnessState object
125
  """
 
131
  attention_focus={},
132
  temporal_continuity=0.0
133
  )
134
+
135
  async def process_consciousness(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
136
  """
137
  Process consciousness using the traditional phi-based approach.
138
  This is an alternative to process_consciousness_cycle that uses different components.
139
+
140
  Args:
141
  input_state: The input state containing sensory and contextual information
142
+
143
  Returns:
144
  A dictionary containing the processed conscious output
145
  """
146
  phi_value = await self.phi_prime_calculator.compute(input_state)
147
  attention_state = await self.attention_system.allocate(input_state)
148
  meta_state = await self.meta_monitor.evaluate(input_state)
149
+
150
  phenomenological_experience = await self.phenomenological_simulator.simulate(
151
  phi_value,
152
  attention_state,
153
  meta_state
154
  )
155
+
156
  return await self._integrate_consciousness_state(phenomenological_experience)
157
+
158
  async def _generate_conscious_output(self, experience: Dict[str, Any]) -> Dict[str, Any]:
159
  """
160
  Generate the final conscious output based on the simulated experience.
161
+
162
  Args:
163
  experience: The simulated experience data
164
+
165
  Returns:
166
  A dictionary containing the final conscious output
167
  """
 
173
  "phenomenal_qualities": experience.get("qualia", {}),
174
  "teleological_vector": experience.get("purpose_direction", {})
175
  }
176
+
177
  return output
178
+
179
  async def _integrate_consciousness_state(self, experience: Dict[str, Any]) -> Dict[str, Any]:
180
  """
181
  Integrate a phenomenological experience into a consciousness state.
182
+
183
  Args:
184
  experience: The phenomenological experience to integrate
185
+
186
  Returns:
187
  A dictionary containing the integrated consciousness state
188
  """
 
196
  "qualia_map": experience.get("qualia", {}),
197
  "response": experience.get("content", "")
198
  }
199
+
200
  return integrated_output
src/core/consciousness_matrix.py CHANGED
@@ -19,18 +19,26 @@ class ConsciousnessMatrix:
19
  attention_state={},
20
  self_awareness_level=0.0
21
  )
22
-
23
  def process_consciousness(self, input_state):
24
  # Implement consciousness processing based on IIT and Global Workspace Theory
25
  self._update_phi_prime()
26
  self._process_emotional_state()
27
  self._update_attention_allocation()
28
  self._evaluate_self_awareness()
29
-
30
  def _update_phi_prime(self):
31
  # Implementation of modified Φ (phi) metrics
32
  pass
33
 
34
  def _process_emotional_state(self):
35
  # 128-dimensional emotional state processing
36
- pass
 
 
 
 
 
 
 
 
 
19
  attention_state={},
20
  self_awareness_level=0.0
21
  )
22
+
23
  def process_consciousness(self, input_state):
24
  # Implement consciousness processing based on IIT and Global Workspace Theory
25
  self._update_phi_prime()
26
  self._process_emotional_state()
27
  self._update_attention_allocation()
28
  self._evaluate_self_awareness()
29
+
30
  def _update_phi_prime(self):
31
  # Implementation of modified Φ (phi) metrics
32
  pass
33
 
34
  def _process_emotional_state(self):
35
  # 128-dimensional emotional state processing
36
+ pass
37
+
38
+ def _update_attention_allocation(self):
39
+ # Update attention allocation based on current state
40
+ pass
41
+
42
+ def _evaluate_self_awareness(self):
43
+ # Evaluate and update self-awareness level
44
+ pass
src/core/consciousness_model.py CHANGED
@@ -1,14 +1,24 @@
1
  from typing import Dict, Any
 
2
  import torch.nn as nn
 
3
 
4
  class ConsciousnessModel(nn.Module):
5
  def __init__(self, config: Dict[str, Any]):
6
  super().__init__()
7
- self.self_awareness = nn.Linear(768, 128)
8
- self.meta_cognitive = nn.Linear(128, 64)
9
- self.phenomenal = nn.Linear(64, 32)
10
-
 
 
 
 
 
 
11
  def forward(self, x):
12
- x = self.self_awareness(x)
13
- x = self.meta_cognitive(x)
14
- return self.phenomenal(x)
 
 
 
1
  from typing import Dict, Any
2
+ import torch
3
  import torch.nn as nn
4
+ import torch.nn.functional as F
5
 
6
  class ConsciousnessModel(nn.Module):
7
  def __init__(self, config: Dict[str, Any]):
8
  super().__init__()
9
+ input_dim = config.get('input_dim', 768)
10
+ hidden_dim1 = config.get('hidden_dim1', 128)
11
+ hidden_dim2 = config.get('hidden_dim2', 64)
12
+ output_dim = config.get('output_dim', 32)
13
+
14
+ self.self_awareness = nn.Linear(input_dim, hidden_dim1)
15
+ self.meta_cognitive = nn.Linear(hidden_dim1, hidden_dim2)
16
+ self.phenomenal = nn.Linear(hidden_dim2, output_dim)
17
+ self.dropout = nn.Dropout(config.get('dropout', 0.1))
18
+
19
  def forward(self, x):
20
+ x = F.relu(self.self_awareness(x))
21
+ x = self.dropout(x)
22
+ x = F.relu(self.meta_cognitive(x))
23
+ x = self.dropout(x)
24
+ return self.phenomenal(x)
src/core/consciousness_modules.py CHANGED
@@ -1,25 +1,47 @@
1
  from enum import Enum
2
- from typing import Dict, List, Optional
3
  import asyncio
4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  class ConsciousnessModule:
6
  def __init__(self, module_id: int):
7
  self.module_id = module_id
8
  self.state = ConsciousnessState()
9
  self.npu = NeuralProcessingUnit()
10
  self.memory = MemoryHierarchy()
11
-
12
  async def process_consciousness(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
13
  neural_processing = self.npu.process_neural_task(input_state['neural_data'])
14
  memory_access = self.memory.access_memory(input_state['memory_key'])
15
-
16
  results = await asyncio.gather(neural_processing, memory_access)
17
  return self._integrate_consciousness_results(results)
18
-
19
  def _integrate_consciousness_results(self, results: List[Any]) -> Dict[str, Any]:
20
  neural_result, memory_result = results
21
  return {
22
  'consciousness_level': self._compute_consciousness_level(neural_result),
23
  'integrated_state': self._merge_states(neural_result, memory_result),
24
  'module_status': self.state.current_status
25
- }
 
 
 
 
 
 
 
 
 
1
  from enum import Enum
2
+ from typing import Dict, List, Optional, Any
3
  import asyncio
4
 
5
+ class ConsciousnessState:
6
+ def __init__(self):
7
+ self.current_status = "active"
8
+
9
+ class NeuralProcessingUnit:
10
+ async def process_neural_task(self, neural_data):
11
+ # Process neural data
12
+ return {"neural_result": neural_data}
13
+
14
+ class MemoryHierarchy:
15
+ async def access_memory(self, memory_key):
16
+ # Access memory based on key
17
+ return {"memory_result": memory_key}
18
+
19
  class ConsciousnessModule:
20
  def __init__(self, module_id: int):
21
  self.module_id = module_id
22
  self.state = ConsciousnessState()
23
  self.npu = NeuralProcessingUnit()
24
  self.memory = MemoryHierarchy()
25
+
26
  async def process_consciousness(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
27
  neural_processing = self.npu.process_neural_task(input_state['neural_data'])
28
  memory_access = self.memory.access_memory(input_state['memory_key'])
29
+
30
  results = await asyncio.gather(neural_processing, memory_access)
31
  return self._integrate_consciousness_results(results)
32
+
33
  def _integrate_consciousness_results(self, results: List[Any]) -> Dict[str, Any]:
34
  neural_result, memory_result = results
35
  return {
36
  'consciousness_level': self._compute_consciousness_level(neural_result),
37
  'integrated_state': self._merge_states(neural_result, memory_result),
38
  'module_status': self.state.current_status
39
+ }
40
+
41
+ def _compute_consciousness_level(self, neural_result: Dict[str, Any]) -> float:
42
+ # Compute consciousness level based on neural results
43
+ return 0.85
44
+
45
+ def _merge_states(self, neural_result: Dict[str, Any], memory_result: Dict[str, Any]) -> Dict[str, Any]:
46
+ # Merge neural and memory states
47
+ return {**neural_result, **memory_result}
src/core/dynamic_self_model.py CHANGED
@@ -46,10 +46,10 @@ class DynamicSelfModel:
46
  async def update(self, integrated_state: Dict[str, Any]) -> Dict[str, Any]:
47
  """
48
  Update the self model based on new integrated state information.
49
-
50
  Args:
51
  integrated_state: Dictionary containing the new integrated state information
52
-
53
  Returns:
54
  Dictionary containing the updated self model state
55
  """
@@ -97,6 +97,8 @@ class DynamicSelfModel:
97
  for key, value in new_beliefs.items():
98
  if key in updated_beliefs:
99
  updated_beliefs[key] = 0.7 * updated_beliefs[key] + 0.3 * value
 
 
100
  return updated_beliefs
101
 
102
  def _update_goals(self, new_goals: Dict[str, float]) -> Dict[str, float]:
@@ -105,6 +107,8 @@ class DynamicSelfModel:
105
  for key, value in new_goals.items():
106
  if key in updated_goals:
107
  updated_goals[key] = 0.8 * updated_goals[key] + 0.2 * value
 
 
108
  return updated_goals
109
 
110
  def _update_emotions(self, new_emotions: Dict[str, float]) -> Dict[str, float]:
@@ -113,6 +117,8 @@ class DynamicSelfModel:
113
  for key, value in new_emotions.items():
114
  if key in updated_emotions:
115
  updated_emotions[key] = 0.5 * updated_emotions[key] + 0.5 * value
 
 
116
  return updated_emotions
117
 
118
  def _update_metacognition(self, new_meta: Dict[str, Any]) -> Dict[str, Any]:
@@ -124,6 +130,8 @@ class DynamicSelfModel:
124
  updated_meta[key] = 0.6 * updated_meta[key] + 0.4 * value
125
  else:
126
  updated_meta[key] = value
 
 
127
  return updated_meta
128
 
129
  def _get_current_state(self) -> Dict[str, Any]:
@@ -135,4 +143,3 @@ class DynamicSelfModel:
135
  "emotions": self.state.emotional_state,
136
  "metacognition": self.state.metacognitive_state
137
  }
138
-
 
46
  async def update(self, integrated_state: Dict[str, Any]) -> Dict[str, Any]:
47
  """
48
  Update the self model based on new integrated state information.
49
+
50
  Args:
51
  integrated_state: Dictionary containing the new integrated state information
52
+
53
  Returns:
54
  Dictionary containing the updated self model state
55
  """
 
97
  for key, value in new_beliefs.items():
98
  if key in updated_beliefs:
99
  updated_beliefs[key] = 0.7 * updated_beliefs[key] + 0.3 * value
100
+ else:
101
+ updated_beliefs[key] = value
102
  return updated_beliefs
103
 
104
  def _update_goals(self, new_goals: Dict[str, float]) -> Dict[str, float]:
 
107
  for key, value in new_goals.items():
108
  if key in updated_goals:
109
  updated_goals[key] = 0.8 * updated_goals[key] + 0.2 * value
110
+ else:
111
+ updated_goals[key] = value
112
  return updated_goals
113
 
114
  def _update_emotions(self, new_emotions: Dict[str, float]) -> Dict[str, float]:
 
117
  for key, value in new_emotions.items():
118
  if key in updated_emotions:
119
  updated_emotions[key] = 0.5 * updated_emotions[key] + 0.5 * value
120
+ else:
121
+ updated_emotions[key] = value
122
  return updated_emotions
123
 
124
  def _update_metacognition(self, new_meta: Dict[str, Any]) -> Dict[str, Any]:
 
130
  updated_meta[key] = 0.6 * updated_meta[key] + 0.4 * value
131
  else:
132
  updated_meta[key] = value
133
+ else:
134
+ updated_meta[key] = value
135
  return updated_meta
136
 
137
  def _get_current_state(self) -> Dict[str, Any]:
 
143
  "emotions": self.state.emotional_state,
144
  "metacognition": self.state.metacognitive_state
145
  }
 
src/core/emotional_intelligence.py CHANGED
@@ -15,11 +15,19 @@ class EmotionalProcessor:
15
  def __init__(self):
16
  self.emotional_memory = {}
17
  self.emotion_vectors = self._initialize_emotion_vectors()
18
-
19
  def process_emotional_context(self, input_data: Dict[str, Any]) -> EmotionalState:
20
  # Process emotional context implementation
21
- pass
 
 
 
 
 
 
 
22
 
23
  def _initialize_emotion_vectors(self) -> Dict[str, List[float]]:
24
  # Initialize emotion vectors implementation
25
- pass
 
 
15
  def __init__(self):
16
  self.emotional_memory = {}
17
  self.emotion_vectors = self._initialize_emotion_vectors()
18
+
19
  def process_emotional_context(self, input_data: Dict[str, Any]) -> EmotionalState:
20
  # Process emotional context implementation
21
+ # Returning a default emotional state to fix the return type error
22
+ return EmotionalState(
23
+ valence=0.0,
24
+ arousal=0.0,
25
+ dominance=0.0,
26
+ emotions=[],
27
+ intensity={}
28
+ )
29
 
30
  def _initialize_emotion_vectors(self) -> Dict[str, List[float]]:
31
  # Initialize emotion vectors implementation
32
+ # Returning an empty dictionary to fix the return type error
33
+ return {}
src/core/ethical_framework.py CHANGED
@@ -1,5 +1,5 @@
1
  from dataclasses import dataclass
2
- from typing import List, Dict
3
 
4
  @dataclass
5
  class EthicalConstraint:
@@ -8,19 +8,43 @@ class EthicalConstraint:
8
  conditions: List[str]
9
  verification_method: str
10
 
 
 
 
 
 
 
 
 
 
 
11
  class EthicalFramework:
12
  def __init__(self):
13
  self.constraints = self._initialize_constraints()
14
  self.value_system = ValueAlignmentSystem()
15
  self.moral_evaluator = MoralEvaluator()
16
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  def evaluate_action(self, action: Dict[str, Any], context: Dict[str, Any]) -> bool:
18
  constraint_check = self._verify_constraints(action)
19
  value_alignment = self.value_system.check_alignment(action)
20
  moral_evaluation = self.moral_evaluator.evaluate(action, context)
21
-
22
  return self._make_ethical_decision(
23
  constraint_check,
24
  value_alignment,
25
  moral_evaluation
26
- )
 
1
  from dataclasses import dataclass
2
+ from typing import List, Dict, Any
3
 
4
  @dataclass
5
  class EthicalConstraint:
 
8
  conditions: List[str]
9
  verification_method: str
10
 
11
+ class ValueAlignmentSystem:
12
+ def check_alignment(self, action: Dict[str, Any]) -> bool:
13
+ # Placeholder implementation
14
+ return True
15
+
16
+ class MoralEvaluator:
17
+ def evaluate(self, action: Dict[str, Any], context: Dict[str, Any]) -> bool:
18
+ # Placeholder implementation
19
+ return True
20
+
21
  class EthicalFramework:
22
  def __init__(self):
23
  self.constraints = self._initialize_constraints()
24
  self.value_system = ValueAlignmentSystem()
25
  self.moral_evaluator = MoralEvaluator()
26
+
27
+ def _initialize_constraints(self) -> List[EthicalConstraint]:
28
+ # Placeholder implementation
29
+ return []
30
+
31
+ def _verify_constraints(self, action: Dict[str, Any]) -> bool:
32
+ # Placeholder implementation
33
+ return True
34
+
35
+ def _make_ethical_decision(self, constraint_check: bool,
36
+ value_alignment: bool,
37
+ moral_evaluation: bool) -> bool:
38
+ # Placeholder implementation
39
+ return constraint_check and value_alignment and moral_evaluation
40
+
41
  def evaluate_action(self, action: Dict[str, Any], context: Dict[str, Any]) -> bool:
42
  constraint_check = self._verify_constraints(action)
43
  value_alignment = self.value_system.check_alignment(action)
44
  moral_evaluation = self.moral_evaluator.evaluate(action, context)
45
+
46
  return self._make_ethical_decision(
47
  constraint_check,
48
  value_alignment,
49
  moral_evaluation
50
+ )
src/core/experience_simulator.py CHANGED
@@ -4,7 +4,7 @@ from .integration_manager import AwarenessState, IntegratedState
4
 
5
  class PhenomenologyEngine:
6
  """Generates phenomenological states from awareness and integrated states."""
7
-
8
  async def generate_state(
9
  self,
10
  awareness: AwarenessState,
@@ -12,11 +12,11 @@ class PhenomenologyEngine:
12
  ) -> Dict[str, Any]:
13
  """
14
  Generate a phenomenological state from awareness and integrated state.
15
-
16
  Args:
17
  awareness: The current awareness state
18
  integrated_state: The integrated cognitive state
19
-
20
  Returns:
21
  A dictionary containing the phenomenological state
22
  """
@@ -24,12 +24,12 @@ class PhenomenologyEngine:
24
  "conscious_content": getattr(awareness, "cognition_state", {}),
25
  "perceptual_field": getattr(awareness, "perception_data", {}),
26
  "cognitive_state": getattr(integrated_state, "cognitive_state", {}),
27
- "affective_tone": {"valence": awareness.emotional_valence}
28
  }
29
 
30
  class QualiaGenerator:
31
  """Generates qualia (subjective experiences) from phenomenological states."""
32
-
33
  async def generate_qualia(
34
  self,
35
  phenomenological_state: Dict[str, Any],
@@ -37,11 +37,11 @@ class QualiaGenerator:
37
  ) -> Dict[str, Any]:
38
  """
39
  Generate qualia from phenomenological state and self model.
40
-
41
  Args:
42
  phenomenological_state: The current phenomenological state
43
  self_model: The agent's self model
44
-
45
  Returns:
46
  A dictionary containing the generated qualia
47
  """
@@ -50,22 +50,22 @@ class QualiaGenerator:
50
  "emotional_qualia": self._generate_emotional_qualia(phenomenological_state),
51
  "cognitive_qualia": self._map_cognitive_states(phenomenological_state, self_model)
52
  }
53
-
54
  def _generate_sensory_qualia(self, state: Dict[str, Any]) -> Dict[str, float]:
55
  """Generate sensory qualia from the phenomenological state."""
56
  return {"visual": 0.8, "auditory": 0.6, "tactile": 0.4}
57
-
58
  def _generate_emotional_qualia(self, state: Dict[str, Any]) -> Dict[str, float]:
59
  """Generate emotional qualia from the phenomenological state."""
60
  return {"pleasure": 0.7, "arousal": 0.5, "dominance": 0.6}
61
-
62
  def _map_cognitive_states(self, state: Dict[str, Any], self_model: Dict[str, Any]) -> Dict[str, Any]:
63
  """Map cognitive states to qualia representations."""
64
  return {"clarity": 0.8, "intensity": 0.7, "relevance": 0.9}
65
 
66
  class TemporalIntegrator:
67
  """Integrates experiences over time to maintain temporal continuity."""
68
-
69
  async def integrate(
70
  self,
71
  current_qualia: Dict[str, Any],
@@ -73,11 +73,11 @@ class TemporalIntegrator:
73
  ) -> Dict[str, Any]:
74
  """
75
  Integrate current qualia with temporal history.
76
-
77
  Args:
78
  current_qualia: The current qualia state
79
  temporal_history: List of previous qualia states
80
-
81
  Returns:
82
  A dictionary containing the temporally integrated experience
83
  """
@@ -87,7 +87,7 @@ class TemporalIntegrator:
87
  else:
88
  # For demonstration, assume higher continuity for longer histories
89
  temporal_continuity = min(0.95, 0.5 + 0.05 * len(temporal_history))
90
-
91
  return {
92
  "integrated_experience": current_qualia,
93
  "temporal_continuity": temporal_continuity,
@@ -99,7 +99,7 @@ class ExperienceSimulator:
99
  self.phenomenology_engine = PhenomenologyEngine()
100
  self.qualia_generator = QualiaGenerator()
101
  self.temporal_integrator = TemporalIntegrator()
102
-
103
  async def simulate(
104
  self,
105
  awareness: AwarenessState,
@@ -108,33 +108,33 @@ class ExperienceSimulator:
108
  ) -> Dict[str, Any]:
109
  """
110
  Simulate subjective experience based on awareness and integrated states.
111
-
112
  Args:
113
  awareness: The current awareness state
114
  integrated_state: The integrated cognitive state
115
  self_model: The agent's self-model state
116
-
117
  Returns:
118
  Dictionary containing the simulated subjective experience
119
  """
120
-
121
  phenomenological_state = await self.phenomenology_engine.generate_state(
122
  awareness,
123
  integrated_state
124
  )
125
-
126
  qualia = await self.qualia_generator.generate_qualia(
127
  phenomenological_state,
128
  self_model
129
  )
130
-
131
  temporal_context = await self.temporal_integrator.integrate(
132
  qualia,
133
  self_model.get('temporal_history', [])
134
  )
135
-
136
  return {
137
  'subjective_experience': qualia,
138
  'temporal_context': temporal_context,
139
  'phenomenological_state': phenomenological_state
140
- }
 
4
 
5
  class PhenomenologyEngine:
6
  """Generates phenomenological states from awareness and integrated states."""
7
+
8
  async def generate_state(
9
  self,
10
  awareness: AwarenessState,
 
12
  ) -> Dict[str, Any]:
13
  """
14
  Generate a phenomenological state from awareness and integrated state.
15
+
16
  Args:
17
  awareness: The current awareness state
18
  integrated_state: The integrated cognitive state
19
+
20
  Returns:
21
  A dictionary containing the phenomenological state
22
  """
 
24
  "conscious_content": getattr(awareness, "cognition_state", {}),
25
  "perceptual_field": getattr(awareness, "perception_data", {}),
26
  "cognitive_state": getattr(integrated_state, "cognitive_state", {}),
27
+ "affective_tone": {"valence": getattr(awareness, "emotional_valence", 0.0)}
28
  }
29
 
30
  class QualiaGenerator:
31
  """Generates qualia (subjective experiences) from phenomenological states."""
32
+
33
  async def generate_qualia(
34
  self,
35
  phenomenological_state: Dict[str, Any],
 
37
  ) -> Dict[str, Any]:
38
  """
39
  Generate qualia from phenomenological state and self model.
40
+
41
  Args:
42
  phenomenological_state: The current phenomenological state
43
  self_model: The agent's self model
44
+
45
  Returns:
46
  A dictionary containing the generated qualia
47
  """
 
50
  "emotional_qualia": self._generate_emotional_qualia(phenomenological_state),
51
  "cognitive_qualia": self._map_cognitive_states(phenomenological_state, self_model)
52
  }
53
+
54
  def _generate_sensory_qualia(self, state: Dict[str, Any]) -> Dict[str, float]:
55
  """Generate sensory qualia from the phenomenological state."""
56
  return {"visual": 0.8, "auditory": 0.6, "tactile": 0.4}
57
+
58
  def _generate_emotional_qualia(self, state: Dict[str, Any]) -> Dict[str, float]:
59
  """Generate emotional qualia from the phenomenological state."""
60
  return {"pleasure": 0.7, "arousal": 0.5, "dominance": 0.6}
61
+
62
  def _map_cognitive_states(self, state: Dict[str, Any], self_model: Dict[str, Any]) -> Dict[str, Any]:
63
  """Map cognitive states to qualia representations."""
64
  return {"clarity": 0.8, "intensity": 0.7, "relevance": 0.9}
65
 
66
  class TemporalIntegrator:
67
  """Integrates experiences over time to maintain temporal continuity."""
68
+
69
  async def integrate(
70
  self,
71
  current_qualia: Dict[str, Any],
 
73
  ) -> Dict[str, Any]:
74
  """
75
  Integrate current qualia with temporal history.
76
+
77
  Args:
78
  current_qualia: The current qualia state
79
  temporal_history: List of previous qualia states
80
+
81
  Returns:
82
  A dictionary containing the temporally integrated experience
83
  """
 
87
  else:
88
  # For demonstration, assume higher continuity for longer histories
89
  temporal_continuity = min(0.95, 0.5 + 0.05 * len(temporal_history))
90
+
91
  return {
92
  "integrated_experience": current_qualia,
93
  "temporal_continuity": temporal_continuity,
 
99
  self.phenomenology_engine = PhenomenologyEngine()
100
  self.qualia_generator = QualiaGenerator()
101
  self.temporal_integrator = TemporalIntegrator()
102
+
103
  async def simulate(
104
  self,
105
  awareness: AwarenessState,
 
108
  ) -> Dict[str, Any]:
109
  """
110
  Simulate subjective experience based on awareness and integrated states.
111
+
112
  Args:
113
  awareness: The current awareness state
114
  integrated_state: The integrated cognitive state
115
  self_model: The agent's self-model state
116
+
117
  Returns:
118
  Dictionary containing the simulated subjective experience
119
  """
120
+
121
  phenomenological_state = await self.phenomenology_engine.generate_state(
122
  awareness,
123
  integrated_state
124
  )
125
+
126
  qualia = await self.qualia_generator.generate_qualia(
127
  phenomenological_state,
128
  self_model
129
  )
130
+
131
  temporal_context = await self.temporal_integrator.integrate(
132
  qualia,
133
  self_model.get('temporal_history', [])
134
  )
135
+
136
  return {
137
  'subjective_experience': qualia,
138
  'temporal_context': temporal_context,
139
  'phenomenological_state': phenomenological_state
140
+ }
src/core/expert_routing.py CHANGED
@@ -10,18 +10,26 @@ class ExpertAllocation:
10
  specialization_score: float
11
  capacity_available: float
12
 
 
 
 
 
 
 
 
 
13
  class ExpertRoutingSystem:
14
  def __init__(self, num_experts: int = 128):
15
  self.num_experts = num_experts
16
  self.experts = self._initialize_experts()
17
  self.router = TopologyAwareRouter()
18
  self.load_balancer = LoadBalancer()
19
-
20
  def allocate_experts(self, input_pattern: torch.Tensor) -> Dict[int, float]:
21
  task_requirements = self._analyze_task_requirements(input_pattern)
22
  available_experts = self._get_available_experts()
23
  return self._optimize_expert_allocation(task_requirements, available_experts)
24
-
25
  def _analyze_task_requirements(self, input_pattern: torch.Tensor) -> Dict[str, float]:
26
  complexity = self._estimate_task_complexity(input_pattern)
27
  specialization_needs = self._determine_specialization_needs(input_pattern)
@@ -29,4 +37,28 @@ class ExpertRoutingSystem:
29
  'complexity': complexity,
30
  'specialization': specialization_needs,
31
  'resource_requirements': self._estimate_resource_needs(complexity)
32
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  specialization_score: float
11
  capacity_available: float
12
 
13
+ class TopologyAwareRouter:
14
+ def __init__(self):
15
+ pass
16
+
17
+ class LoadBalancer:
18
+ def __init__(self):
19
+ pass
20
+
21
  class ExpertRoutingSystem:
22
  def __init__(self, num_experts: int = 128):
23
  self.num_experts = num_experts
24
  self.experts = self._initialize_experts()
25
  self.router = TopologyAwareRouter()
26
  self.load_balancer = LoadBalancer()
27
+
28
  def allocate_experts(self, input_pattern: torch.Tensor) -> Dict[int, float]:
29
  task_requirements = self._analyze_task_requirements(input_pattern)
30
  available_experts = self._get_available_experts()
31
  return self._optimize_expert_allocation(task_requirements, available_experts)
32
+
33
  def _analyze_task_requirements(self, input_pattern: torch.Tensor) -> Dict[str, float]:
34
  complexity = self._estimate_task_complexity(input_pattern)
35
  specialization_needs = self._determine_specialization_needs(input_pattern)
 
37
  'complexity': complexity,
38
  'specialization': specialization_needs,
39
  'resource_requirements': self._estimate_resource_needs(complexity)
40
+ }
41
+
42
+ def _initialize_experts(self):
43
+ # Initialize experts
44
+ return [i for i in range(self.num_experts)]
45
+
46
+ def _get_available_experts(self):
47
+ # Get available experts
48
+ return self.experts
49
+
50
+ def _optimize_expert_allocation(self, task_requirements, available_experts):
51
+ # Optimize expert allocation
52
+ return {expert: 1.0 for expert in available_experts[:3]}
53
+
54
+ def _estimate_task_complexity(self, input_pattern):
55
+ # Estimate task complexity
56
+ return 0.5
57
+
58
+ def _determine_specialization_needs(self, input_pattern):
59
+ # Determine specialization needs
60
+ return 0.7
61
+
62
+ def _estimate_resource_needs(self, complexity):
63
+ # Estimate resource needs
64
+ return complexity * 2.0
src/core/foundation_layer.py CHANGED
@@ -11,15 +11,19 @@ class FoundationLayer(nn.Module):
11
  num_experts=128,
12
  input_size=self.config.hidden_size
13
  )
14
-
15
  def forward(self, input_ids, attention_mask=None):
16
  transformer_output = self.transformer(
17
  input_ids=input_ids,
18
  attention_mask=attention_mask
19
  )
20
-
21
  routed_output = self.sparse_router(transformer_output.last_hidden_state)
22
- return self._process_consciousness_emergence(routed_output)
 
 
 
 
23
 
24
  class MixtureOfExperts(nn.Module):
25
  def __init__(self, num_experts: int, input_size: int):
@@ -31,4 +35,39 @@ class MixtureOfExperts(nn.Module):
31
  d_model=input_size,
32
  nhead=8
33
  ) for _ in range(num_experts)
34
- ])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  num_experts=128,
12
  input_size=self.config.hidden_size
13
  )
14
+
15
  def forward(self, input_ids, attention_mask=None):
16
  transformer_output = self.transformer(
17
  input_ids=input_ids,
18
  attention_mask=attention_mask
19
  )
20
+
21
  routed_output = self.sparse_router(transformer_output.last_hidden_state)
22
+ return routed_output # Removed undefined method call
23
+
24
+ def _process_consciousness_emergence(self, hidden_states):
25
+ # Adding the missing method
26
+ return hidden_states # Simple implementation, modify as needed
27
 
28
  class MixtureOfExperts(nn.Module):
29
  def __init__(self, num_experts: int, input_size: int):
 
35
  d_model=input_size,
36
  nhead=8
37
  ) for _ in range(num_experts)
38
+ ])
39
+
40
+ def forward(self, hidden_states):
41
+ # Adding the missing forward method
42
+ batch_size, seq_len, hidden_size = hidden_states.shape
43
+
44
+ # Calculate routing probabilities
45
+ routing_logits = self.gate(hidden_states.view(-1, hidden_size))
46
+ routing_probs = torch.softmax(routing_logits, dim=-1)
47
+
48
+ # Get top-k experts
49
+ k = 2 # Using top-2 experts
50
+ top_k_probs, top_k_indices = torch.topk(routing_probs, k, dim=-1)
51
+ top_k_probs = top_k_probs / top_k_probs.sum(dim=-1, keepdim=True) # Normalize
52
+
53
+ # Reshape for easier processing
54
+ hidden_states_flat = hidden_states.view(-1, 1, hidden_size)
55
+
56
+ # Initialize output
57
+ final_output = torch.zeros_like(hidden_states_flat)
58
+
59
+ # Route to experts
60
+ for i, expert in enumerate(self.experts):
61
+ # Create mask for this expert
62
+ mask = (top_k_indices == i).any(dim=-1).unsqueeze(-1)
63
+ if mask.sum() > 0:
64
+ # Only process tokens routed to this expert
65
+ expert_input = hidden_states_flat[mask.squeeze(-1)]
66
+ # Apply expert
67
+ expert_output = expert(expert_input)
68
+ # Weight by routing probability
69
+ weight_mask = (top_k_indices == i).float() * top_k_probs
70
+ weight_mask = weight_mask.unsqueeze(-1)
71
+ final_output[mask.squeeze(-1)] += expert_output * weight_mask[mask.squeeze(-1)]
72
+
73
+ return final_output.view(batch_size, seq_len, hidden_size)
src/core/integration_layer.py CHANGED
@@ -1,27 +1,45 @@
 
 
 
 
 
 
 
 
 
 
1
  class IntegrationLayer:
2
  def __init__(self):
3
  self.symbolic_processor = SymbolicProcessor()
4
  self.neural_processor = NeuralProcessor()
5
  self.semiotic_processor = SemioticProcessor()
6
-
7
  def process_input(self, input_data):
8
  # Bidirectional processing between symbolic and subsymbolic systems
9
  neural_output = self.neural_processor.process(input_data)
10
  symbolic_output = self.symbolic_processor.process(input_data)
11
  semiotic_interpretation = self.semiotic_processor.interpret(
12
- neural_output,
13
  symbolic_output
14
  )
15
  return self._integrate_outputs(
16
- neural_output,
17
- symbolic_output,
18
  semiotic_interpretation
19
  )
20
 
 
 
 
 
 
 
 
 
21
  class SemioticProcessor:
22
  def __init__(self):
23
  self.sign_levels = ['syntactic', 'semantic', 'pragmatic']
24
-
25
  def interpret(self, neural_output, symbolic_output):
26
  # Multi-level sign processing implementation
27
- pass
 
1
+ class SymbolicProcessor:
2
+ def process(self, input_data):
3
+ # Implement symbolic processing logic
4
+ return {"symbolic_result": input_data}
5
+
6
+ class NeuralProcessor:
7
+ def process(self, input_data):
8
+ # Implement neural processing logic
9
+ return {"neural_result": input_data}
10
+
11
  class IntegrationLayer:
12
  def __init__(self):
13
  self.symbolic_processor = SymbolicProcessor()
14
  self.neural_processor = NeuralProcessor()
15
  self.semiotic_processor = SemioticProcessor()
16
+
17
  def process_input(self, input_data):
18
  # Bidirectional processing between symbolic and subsymbolic systems
19
  neural_output = self.neural_processor.process(input_data)
20
  symbolic_output = self.symbolic_processor.process(input_data)
21
  semiotic_interpretation = self.semiotic_processor.interpret(
22
+ neural_output,
23
  symbolic_output
24
  )
25
  return self._integrate_outputs(
26
+ neural_output,
27
+ symbolic_output,
28
  semiotic_interpretation
29
  )
30
 
31
+ def _integrate_outputs(self, neural_output, symbolic_output, semiotic_interpretation):
32
+ # Implement integration logic
33
+ return {
34
+ "neural": neural_output,
35
+ "symbolic": symbolic_output,
36
+ "semiotic": semiotic_interpretation
37
+ }
38
+
39
  class SemioticProcessor:
40
  def __init__(self):
41
  self.sign_levels = ['syntactic', 'semantic', 'pragmatic']
42
+
43
  def interpret(self, neural_output, symbolic_output):
44
  # Multi-level sign processing implementation
45
+ return {"interpretation": self.sign_levels}
src/core/integration_manager.py CHANGED
@@ -26,7 +26,7 @@ class AwarenessLevel(Enum):
26
  class AwarenessState:
27
  """
28
  Data class representing a state of awareness.
29
-
30
  Attributes:
31
  level (AwarenessLevel): The level of awareness.
32
  perception_data (Dict[str, Any]): Data related to perceptions.
@@ -41,12 +41,12 @@ class AwarenessState:
41
  emotional_valence: float # Range from -1.0 to 1.0
42
  semantic_context: Optional[Dict[str, Any]] = None
43
  temporal_awareness: Optional[Dict[str, Any]] = None
44
-
45
  @dataclass
46
  class IntegratedState(Generic[T]):
47
  """
48
  Data class representing an integrated consciousness state.
49
-
50
  Attributes:
51
  primary_awareness (AwarenessState): The primary awareness state.
52
  secondary_states (List[AwarenessState]): List of secondary awareness states.
@@ -60,59 +60,13 @@ class IntegratedState(Generic[T]):
60
  emergent_properties: Dict[str, Any]
61
  teleological_vector: Optional[Dict[str, float]] = None
62
 
63
-
64
- from typing import Dict, Any, List
65
- import torch
66
- import torch.nn as nn
67
- from .states import AwarenessState, AwarenessLevel
68
-
69
  class IntegrationManager:
70
- def __init__(self):
71
- self.integration_network = nn.Sequential(
72
- nn.Linear(256, 128),
73
- nn.ReLU(),
74
- nn.Linear(128, 64)
75
- )
76
-
77
- async def integrate(self, awareness: AwarenessState) -> Dict[str, Any]:
78
- if not isinstance(awareness, AwarenessState):
79
- raise ValueError("Primary awareness state must be of type AwarenessState")
80
-
81
- emergent_properties = await self._generate_emergent_properties(awareness)
82
-
83
- return {
84
- "integrated_state": self._integrate_awareness(awareness),
85
- "consciousness_level": awareness.consciousness_level,
86
- "emotional_context": {"valence": awareness.emotional_valence},
87
- "emergent_properties": emergent_properties
88
- }
89
-
90
- async def _generate_emergent_properties(self, primary: AwarenessState) -> Dict[str, Any]:
91
- return {
92
- "awareness_depth": self._calculate_awareness_depth(primary),
93
- "integration_level": primary.awareness_level,
94
- "consciousness_state": str(primary.level),
95
- "cognitive_complexity": self._calculate_cognitive_complexity(primary)
96
- }
97
-
98
- def _calculate_awareness_depth(self, primary: AwarenessState) -> float:
99
- return primary.level.value / len(AwarenessLevel)
100
-
101
- def _calculate_cognitive_complexity(self, primary: AwarenessState) -> float:
102
- base_complexity = len(primary.cognitive_state) / 10 # Normalize
103
- return base_complexity * primary.awareness_level
104
-
105
- def _integrate_awareness(self, awareness: AwarenessState) -> Dict[str, Any]:
106
- return {
107
- "attention": awareness.attention_vector.tolist(),
108
- "awareness_level": awareness.awareness_level,
109
- "cognitive_state": awareness.cognitive_state
110
- }
111
-
112
  def __init__(self, integration_threshold: float = 0.7, coherence_factor: float = 0.85):
113
  """
114
  Initialize the IntegrationManager.
115
-
116
  Args:
117
  integration_threshold (float): Minimum threshold for integration to occur.
118
  coherence_factor (float): Factor influencing coherence of integrated states.
@@ -121,52 +75,52 @@ class IntegrationManager:
121
  self.coherence_factor = coherence_factor
122
  self.state_history: List[IntegratedState] = []
123
  self.integration_lock = asyncio.Lock()
124
-
125
- async def integrate(self,
126
- awareness_state: AwarenessState,
127
  secondary_states: Optional[List[AwarenessState]] = None) -> IntegratedState:
128
  """
129
  Integrate an awareness state with optional secondary states.
130
-
131
  This asynchronous method takes a primary awareness state and optional
132
  secondary states, and integrates them into a coherent consciousness state.
133
  The integration process considers the relationships between states,
134
  their coherence, and emergent properties from their combination.
135
-
136
  Args:
137
  awareness_state (AwarenessState): The primary awareness state to integrate.
138
  secondary_states (Optional[List[AwarenessState]]): Secondary states to integrate.
139
  Defaults to None.
140
-
141
  Returns:
142
  IntegratedState: A new integrated consciousness state.
143
-
144
  Raises:
145
  ValueError: If awareness_state is invalid or integration fails.
146
  """
147
  if not isinstance(awareness_state, AwarenessState):
148
  raise ValueError("Primary awareness state must be of type AwarenessState")
149
-
150
  # Use empty list if secondary_states is None
151
  secondary_states = secondary_states or []
152
-
153
  async with self.integration_lock:
154
  # Calculate coherence based on state compatibility
155
  coherence = self._calculate_coherence(awareness_state, secondary_states)
156
-
157
  # Generate emergent properties through integration
158
  emergent_properties = await self._generate_emergent_properties(
159
- awareness_state,
160
  secondary_states,
161
  coherence
162
  )
163
-
164
  # Calculate teleological vector (purposeful direction)
165
  teleological_vector = self._calculate_teleological_vector(
166
  awareness_state,
167
  secondary_states
168
  )
169
-
170
  # Create the integrated state
171
  integrated_state = IntegratedState(
172
  primary_awareness=awareness_state,
@@ -175,145 +129,146 @@ class IntegrationManager:
175
  emergent_properties=emergent_properties,
176
  teleological_vector=teleological_vector
177
  )
178
-
179
  # Add to history and return
180
  self.state_history.append(integrated_state)
181
  return integrated_state
182
-
183
- def _calculate_coherence(self,
184
- primary: AwarenessState,
185
  secondaries: List[AwarenessState]) -> float:
186
  """
187
  Calculate the coherence between the primary and secondary states.
188
-
189
  Args:
190
  primary (AwarenessState): Primary awareness state.
191
  secondaries (List[AwarenessState]): List of secondary awareness states.
192
-
193
  Returns:
194
  float: Coherence value between 0.0 and 1.0.
195
  """
196
  # Simplified coherence calculation
197
  if not secondaries:
198
  return 1.0 # Perfect coherence with only primary state
199
-
200
  # Base coherence starts at coherence_factor and is modified by state compatibility
201
  base_coherence = self.coherence_factor
202
-
203
  # Factor in emotional alignment
204
  emotional_alignment = sum(
205
  1 - abs(primary.emotional_valence - secondary.emotional_valence) / 2
206
  for secondary in secondaries
207
  ) / len(secondaries)
208
-
209
  # Factor in awareness level compatibility
210
  level_compatibility = sum(
211
  1 - abs(primary.level.value - secondary.level.value) / 5 # Normalize by max enum difference
212
  for secondary in secondaries
213
  ) / len(secondaries)
214
-
215
  # Weighted combination
216
- coherence = (base_coherence * 0.5 +
217
- emotional_alignment * 0.3 +
218
  level_compatibility * 0.2)
219
-
220
  return max(0.0, min(1.0, coherence)) # Clamp between 0 and 1
221
-
222
  async def _generate_emergent_properties(self,
223
  primary: AwarenessState,
224
  secondaries: List[AwarenessState],
225
  coherence: float) -> Dict[str, Any]:
226
  """
227
  Generate emergent properties from the integration of awareness states.
228
-
229
  Args:
230
  primary (AwarenessState): Primary awareness state.
231
  secondaries (List[AwarenessState]): List of secondary awareness states.
232
  coherence (float): Calculated coherence of the integration.
233
-
234
  Returns:
235
  Dict[str, Any]: Dictionary of emergent properties.
236
  """
237
  emergent_properties = {
238
  "coherence_level": coherence,
239
  "awareness_depth": self._calculate_awareness_depth(primary, secondaries),
240
- "cognitive_complexity": self._calculate_cognitive_complexity(primary, secondaries)
 
241
  }
242
-
243
  # Simulate computational intensity with sleep
244
  await asyncio.sleep(0.01)
245
-
246
  # Add semantic richness if semantic contexts are available
247
  if primary.semantic_context:
248
  emergent_properties["semantic_richness"] = len(primary.semantic_context)
249
-
250
  if any(s.semantic_context for s in secondaries if s.semantic_context):
251
  emergent_properties["semantic_richness"] += sum(
252
  len(s.semantic_context or {}) for s in secondaries
253
  ) / (len(secondaries) + 1) # Average including primary
254
-
255
  return emergent_properties
256
-
257
- def _calculate_awareness_depth(self,
258
- primary: AwarenessState,
259
  secondaries: List[AwarenessState]) -> float:
260
  """
261
  Calculate the depth of awareness from the states.
262
-
263
  Args:
264
  primary (AwarenessState): Primary awareness state.
265
  secondaries (List[AwarenessState]): List of secondary awareness states.
266
-
267
  Returns:
268
  float: Calculated awareness depth value.
269
  """
270
  # Base depth from primary state's level
271
  base_depth = primary.level.value / len(AwarenessLevel)
272
-
273
  # Enhance with secondary states if present
274
  if secondaries:
275
  secondary_contribution = sum(s.level.value for s in secondaries) / (len(secondaries) * len(AwarenessLevel))
276
  # Weighted combination
277
  return (base_depth * 0.7) + (secondary_contribution * 0.3)
278
-
279
  return base_depth
280
-
281
- def _calculate_cognitive_complexity(self,
282
- primary: AwarenessState,
283
  secondaries: List[AwarenessState]) -> float:
284
  """
285
  Calculate the cognitive complexity of the integrated state.
286
-
287
  Args:
288
  primary (AwarenessState): Primary awareness state.
289
  secondaries (List[AwarenessState]): List of secondary awareness states.
290
-
291
  Returns:
292
  float: Cognitive complexity value.
293
  """
294
  # Base complexity from primary state
295
  base_complexity = len(primary.cognition_state) / 10 # Normalize
296
-
297
  # Enhance with secondary states
298
  if secondaries:
299
  # Average complexity of secondaries
300
  secondary_complexity = sum(len(s.cognition_state) for s in secondaries) / len(secondaries) / 10
301
  interaction_factor = len(secondaries) * 0.1 # More states = more complexity
302
-
303
  return min(1.0, base_complexity + secondary_complexity + interaction_factor)
304
-
305
  return min(1.0, base_complexity)
306
-
307
  def _calculate_teleological_vector(self,
308
  primary: AwarenessState,
309
  secondaries: List[AwarenessState]) -> Dict[str, float]:
310
  """
311
  Calculate the teleological vector representing purposeful direction.
312
-
313
  Args:
314
  primary (AwarenessState): Primary awareness state.
315
  secondaries (List[AwarenessState]): List of secondary awareness states.
316
-
317
  Returns:
318
  Dict[str, float]: A vector of purpose directions and intensities.
319
  """
@@ -325,40 +280,39 @@ class IntegrationManager:
325
  "coherence_maintenance": 0.5,
326
  "purposeful_action": 0.5
327
  }
328
-
329
  # Modify based on primary state
330
  if primary.level == AwarenessLevel.SELF_AWARE or primary.level == AwarenessLevel.TRANSCENDENT:
331
  teleological_vector["meaning_seeking"] += 0.2
332
  teleological_vector["complexity_increase"] += 0.1
333
-
334
  # Emotional valence affects self-preservation and purposeful action
335
  teleological_vector["self_preservation"] += primary.emotional_valence * 0.2
336
  teleological_vector["purposeful_action"] += abs(primary.emotional_valence) * 0.3
337
-
338
  # Secondary states influence
339
  if secondaries:
340
  # Coherence maintenance influenced by number of states to integrate
341
  teleological_vector["coherence_maintenance"] += min(0.4, len(secondaries) * 0.1)
342
-
343
  # Average emotional valence affects meaning seeking
344
  avg_emotion = sum(s.emotional_valence for s in secondaries) / len(secondaries)
345
  teleological_vector["meaning_seeking"] += avg_emotion * 0.1
346
-
347
  # Normalize values to 0.0-1.0 range
348
  for key in teleological_vector:
349
  teleological_vector[key] = max(0.0, min(1.0, teleological_vector[key]))
350
-
351
  return teleological_vector
352
-
353
  def get_integration_history(self, limit: int = 10) -> List[IntegratedState]:
354
  """
355
  Retrieve recent integration history.
356
-
357
  Args:
358
  limit (int): Maximum number of history items to return. Defaults to 10.
359
-
360
  Returns:
361
  List[IntegratedState]: Recent integration states.
362
  """
363
  return self.state_history[-limit:] if self.state_history else []
364
-
 
26
  class AwarenessState:
27
  """
28
  Data class representing a state of awareness.
29
+
30
  Attributes:
31
  level (AwarenessLevel): The level of awareness.
32
  perception_data (Dict[str, Any]): Data related to perceptions.
 
41
  emotional_valence: float # Range from -1.0 to 1.0
42
  semantic_context: Optional[Dict[str, Any]] = None
43
  temporal_awareness: Optional[Dict[str, Any]] = None
44
+
45
  @dataclass
46
  class IntegratedState(Generic[T]):
47
  """
48
  Data class representing an integrated consciousness state.
49
+
50
  Attributes:
51
  primary_awareness (AwarenessState): The primary awareness state.
52
  secondary_states (List[AwarenessState]): List of secondary awareness states.
 
60
  emergent_properties: Dict[str, Any]
61
  teleological_vector: Optional[Dict[str, float]] = None
62
 
 
 
 
 
 
 
63
  class IntegrationManager:
64
+ """Class for managing integration of awareness states."""
65
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
  def __init__(self, integration_threshold: float = 0.7, coherence_factor: float = 0.85):
67
  """
68
  Initialize the IntegrationManager.
69
+
70
  Args:
71
  integration_threshold (float): Minimum threshold for integration to occur.
72
  coherence_factor (float): Factor influencing coherence of integrated states.
 
75
  self.coherence_factor = coherence_factor
76
  self.state_history: List[IntegratedState] = []
77
  self.integration_lock = asyncio.Lock()
78
+
79
+ async def integrate(self,
80
+ awareness_state: AwarenessState,
81
  secondary_states: Optional[List[AwarenessState]] = None) -> IntegratedState:
82
  """
83
  Integrate an awareness state with optional secondary states.
84
+
85
  This asynchronous method takes a primary awareness state and optional
86
  secondary states, and integrates them into a coherent consciousness state.
87
  The integration process considers the relationships between states,
88
  their coherence, and emergent properties from their combination.
89
+
90
  Args:
91
  awareness_state (AwarenessState): The primary awareness state to integrate.
92
  secondary_states (Optional[List[AwarenessState]]): Secondary states to integrate.
93
  Defaults to None.
94
+
95
  Returns:
96
  IntegratedState: A new integrated consciousness state.
97
+
98
  Raises:
99
  ValueError: If awareness_state is invalid or integration fails.
100
  """
101
  if not isinstance(awareness_state, AwarenessState):
102
  raise ValueError("Primary awareness state must be of type AwarenessState")
103
+
104
  # Use empty list if secondary_states is None
105
  secondary_states = secondary_states or []
106
+
107
  async with self.integration_lock:
108
  # Calculate coherence based on state compatibility
109
  coherence = self._calculate_coherence(awareness_state, secondary_states)
110
+
111
  # Generate emergent properties through integration
112
  emergent_properties = await self._generate_emergent_properties(
113
+ awareness_state,
114
  secondary_states,
115
  coherence
116
  )
117
+
118
  # Calculate teleological vector (purposeful direction)
119
  teleological_vector = self._calculate_teleological_vector(
120
  awareness_state,
121
  secondary_states
122
  )
123
+
124
  # Create the integrated state
125
  integrated_state = IntegratedState(
126
  primary_awareness=awareness_state,
 
129
  emergent_properties=emergent_properties,
130
  teleological_vector=teleological_vector
131
  )
132
+
133
  # Add to history and return
134
  self.state_history.append(integrated_state)
135
  return integrated_state
136
+
137
+ def _calculate_coherence(self,
138
+ primary: AwarenessState,
139
  secondaries: List[AwarenessState]) -> float:
140
  """
141
  Calculate the coherence between the primary and secondary states.
142
+
143
  Args:
144
  primary (AwarenessState): Primary awareness state.
145
  secondaries (List[AwarenessState]): List of secondary awareness states.
146
+
147
  Returns:
148
  float: Coherence value between 0.0 and 1.0.
149
  """
150
  # Simplified coherence calculation
151
  if not secondaries:
152
  return 1.0 # Perfect coherence with only primary state
153
+
154
  # Base coherence starts at coherence_factor and is modified by state compatibility
155
  base_coherence = self.coherence_factor
156
+
157
  # Factor in emotional alignment
158
  emotional_alignment = sum(
159
  1 - abs(primary.emotional_valence - secondary.emotional_valence) / 2
160
  for secondary in secondaries
161
  ) / len(secondaries)
162
+
163
  # Factor in awareness level compatibility
164
  level_compatibility = sum(
165
  1 - abs(primary.level.value - secondary.level.value) / 5 # Normalize by max enum difference
166
  for secondary in secondaries
167
  ) / len(secondaries)
168
+
169
  # Weighted combination
170
+ coherence = (base_coherence * 0.5 +
171
+ emotional_alignment * 0.3 +
172
  level_compatibility * 0.2)
173
+
174
  return max(0.0, min(1.0, coherence)) # Clamp between 0 and 1
175
+
176
  async def _generate_emergent_properties(self,
177
  primary: AwarenessState,
178
  secondaries: List[AwarenessState],
179
  coherence: float) -> Dict[str, Any]:
180
  """
181
  Generate emergent properties from the integration of awareness states.
182
+
183
  Args:
184
  primary (AwarenessState): Primary awareness state.
185
  secondaries (List[AwarenessState]): List of secondary awareness states.
186
  coherence (float): Calculated coherence of the integration.
187
+
188
  Returns:
189
  Dict[str, Any]: Dictionary of emergent properties.
190
  """
191
  emergent_properties = {
192
  "coherence_level": coherence,
193
  "awareness_depth": self._calculate_awareness_depth(primary, secondaries),
194
+ "cognitive_complexity": self._calculate_cognitive_complexity(primary, secondaries),
195
+ "consciousness_state": str(primary.level)
196
  }
197
+
198
  # Simulate computational intensity with sleep
199
  await asyncio.sleep(0.01)
200
+
201
  # Add semantic richness if semantic contexts are available
202
  if primary.semantic_context:
203
  emergent_properties["semantic_richness"] = len(primary.semantic_context)
204
+
205
  if any(s.semantic_context for s in secondaries if s.semantic_context):
206
  emergent_properties["semantic_richness"] += sum(
207
  len(s.semantic_context or {}) for s in secondaries
208
  ) / (len(secondaries) + 1) # Average including primary
209
+
210
  return emergent_properties
211
+
212
+ def _calculate_awareness_depth(self,
213
+ primary: AwarenessState,
214
  secondaries: List[AwarenessState]) -> float:
215
  """
216
  Calculate the depth of awareness from the states.
217
+
218
  Args:
219
  primary (AwarenessState): Primary awareness state.
220
  secondaries (List[AwarenessState]): List of secondary awareness states.
221
+
222
  Returns:
223
  float: Calculated awareness depth value.
224
  """
225
  # Base depth from primary state's level
226
  base_depth = primary.level.value / len(AwarenessLevel)
227
+
228
  # Enhance with secondary states if present
229
  if secondaries:
230
  secondary_contribution = sum(s.level.value for s in secondaries) / (len(secondaries) * len(AwarenessLevel))
231
  # Weighted combination
232
  return (base_depth * 0.7) + (secondary_contribution * 0.3)
233
+
234
  return base_depth
235
+
236
+ def _calculate_cognitive_complexity(self,
237
+ primary: AwarenessState,
238
  secondaries: List[AwarenessState]) -> float:
239
  """
240
  Calculate the cognitive complexity of the integrated state.
241
+
242
  Args:
243
  primary (AwarenessState): Primary awareness state.
244
  secondaries (List[AwarenessState]): List of secondary awareness states.
245
+
246
  Returns:
247
  float: Cognitive complexity value.
248
  """
249
  # Base complexity from primary state
250
  base_complexity = len(primary.cognition_state) / 10 # Normalize
251
+
252
  # Enhance with secondary states
253
  if secondaries:
254
  # Average complexity of secondaries
255
  secondary_complexity = sum(len(s.cognition_state) for s in secondaries) / len(secondaries) / 10
256
  interaction_factor = len(secondaries) * 0.1 # More states = more complexity
257
+
258
  return min(1.0, base_complexity + secondary_complexity + interaction_factor)
259
+
260
  return min(1.0, base_complexity)
261
+
262
  def _calculate_teleological_vector(self,
263
  primary: AwarenessState,
264
  secondaries: List[AwarenessState]) -> Dict[str, float]:
265
  """
266
  Calculate the teleological vector representing purposeful direction.
267
+
268
  Args:
269
  primary (AwarenessState): Primary awareness state.
270
  secondaries (List[AwarenessState]): List of secondary awareness states.
271
+
272
  Returns:
273
  Dict[str, float]: A vector of purpose directions and intensities.
274
  """
 
280
  "coherence_maintenance": 0.5,
281
  "purposeful_action": 0.5
282
  }
283
+
284
  # Modify based on primary state
285
  if primary.level == AwarenessLevel.SELF_AWARE or primary.level == AwarenessLevel.TRANSCENDENT:
286
  teleological_vector["meaning_seeking"] += 0.2
287
  teleological_vector["complexity_increase"] += 0.1
288
+
289
  # Emotional valence affects self-preservation and purposeful action
290
  teleological_vector["self_preservation"] += primary.emotional_valence * 0.2
291
  teleological_vector["purposeful_action"] += abs(primary.emotional_valence) * 0.3
292
+
293
  # Secondary states influence
294
  if secondaries:
295
  # Coherence maintenance influenced by number of states to integrate
296
  teleological_vector["coherence_maintenance"] += min(0.4, len(secondaries) * 0.1)
297
+
298
  # Average emotional valence affects meaning seeking
299
  avg_emotion = sum(s.emotional_valence for s in secondaries) / len(secondaries)
300
  teleological_vector["meaning_seeking"] += avg_emotion * 0.1
301
+
302
  # Normalize values to 0.0-1.0 range
303
  for key in teleological_vector:
304
  teleological_vector[key] = max(0.0, min(1.0, teleological_vector[key]))
305
+
306
  return teleological_vector
307
+
308
  def get_integration_history(self, limit: int = 10) -> List[IntegratedState]:
309
  """
310
  Retrieve recent integration history.
311
+
312
  Args:
313
  limit (int): Maximum number of history items to return. Defaults to 10.
314
+
315
  Returns:
316
  List[IntegratedState]: Recent integration states.
317
  """
318
  return self.state_history[-limit:] if self.state_history else []
 
src/core/metacognitive_monitor.py CHANGED
@@ -18,11 +18,31 @@ class MetaCognitiveMonitor:
18
  error_detection={},
19
  learning_progress=0.0
20
  )
21
-
22
  def analyze(self, current_state):
23
  self._assess_cognitive_load(current_state)
24
  self._track_attention_allocation(current_state)
25
  self._monitor_processing_efficiency(current_state)
26
  self._detect_errors(current_state)
27
  self._evaluate_learning(current_state)
28
- return self.current_state
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  error_detection={},
19
  learning_progress=0.0
20
  )
21
+
22
  def analyze(self, current_state):
23
  self._assess_cognitive_load(current_state)
24
  self._track_attention_allocation(current_state)
25
  self._monitor_processing_efficiency(current_state)
26
  self._detect_errors(current_state)
27
  self._evaluate_learning(current_state)
28
+ return self.current_state
29
+
30
+ def _assess_cognitive_load(self, current_state):
31
+ # Implementation for cognitive load assessment
32
+ pass
33
+
34
+ def _track_attention_allocation(self, current_state):
35
+ # Implementation for attention allocation tracking
36
+ pass
37
+
38
+ def _monitor_processing_efficiency(self, current_state):
39
+ # Implementation for processing efficiency monitoring
40
+ pass
41
+
42
+ def _detect_errors(self, current_state):
43
+ # Implementation for error detection
44
+ pass
45
+
46
+ def _evaluate_learning(self, current_state):
47
+ # Implementation for learning evaluation
48
+ pass
src/core/multimodal_perception.py CHANGED
@@ -11,6 +11,42 @@ class PerceptionState:
11
  context_vector: torch.Tensor
12
  attention_weights: Dict[str, float]
13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  class MultiModalEncoder(nn.Module):
15
  def __init__(self):
16
  super().__init__()
@@ -18,16 +54,32 @@ class MultiModalEncoder(nn.Module):
18
  self.audio_encoder = AudioProcessor()
19
  self.text_encoder = TextProcessor()
20
  self.fusion_layer = ModalityFusion()
21
-
22
  def forward(self, inputs: Dict[str, torch.Tensor]) -> PerceptionState:
23
  visual_features = self.visual_encoder(inputs.get('visual'))
24
  audio_features = self.audio_encoder(inputs.get('audio'))
25
  text_features = self.text_encoder(inputs.get('text'))
26
-
27
  fused_representation = self.fusion_layer(
28
  visual_features,
29
  audio_features,
30
  text_features
31
  )
32
-
33
- return self._create_perception_state(fused_representation)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  context_vector: torch.Tensor
12
  attention_weights: Dict[str, float]
13
 
14
+ class VisualProcessor(nn.Module):
15
+ def __init__(self):
16
+ super().__init__()
17
+ # Visual processing layers would be defined here
18
+
19
+ def forward(self, visual_input):
20
+ # Process visual input
21
+ return visual_input if visual_input is not None else torch.zeros(1)
22
+
23
+ class AudioProcessor(nn.Module):
24
+ def __init__(self):
25
+ super().__init__()
26
+ # Audio processing layers would be defined here
27
+
28
+ def forward(self, audio_input):
29
+ # Process audio input
30
+ return audio_input if audio_input is not None else torch.zeros(1)
31
+
32
+ class TextProcessor(nn.Module):
33
+ def __init__(self):
34
+ super().__init__()
35
+ # Text processing layers would be defined here
36
+
37
+ def forward(self, text_input):
38
+ # Process text input
39
+ return text_input if text_input is not None else torch.zeros(1)
40
+
41
+ class ModalityFusion(nn.Module):
42
+ def __init__(self):
43
+ super().__init__()
44
+ # Fusion layers would be defined here
45
+
46
+ def forward(self, visual, audio, text):
47
+ # Fusion logic
48
+ return torch.cat([visual, audio, text], dim=-1) if all(x is not None for x in [visual, audio, text]) else torch.zeros(1)
49
+
50
  class MultiModalEncoder(nn.Module):
51
  def __init__(self):
52
  super().__init__()
 
54
  self.audio_encoder = AudioProcessor()
55
  self.text_encoder = TextProcessor()
56
  self.fusion_layer = ModalityFusion()
57
+
58
  def forward(self, inputs: Dict[str, torch.Tensor]) -> PerceptionState:
59
  visual_features = self.visual_encoder(inputs.get('visual'))
60
  audio_features = self.audio_encoder(inputs.get('audio'))
61
  text_features = self.text_encoder(inputs.get('text'))
62
+
63
  fused_representation = self.fusion_layer(
64
  visual_features,
65
  audio_features,
66
  text_features
67
  )
68
+
69
+ return self._create_perception_state(visual_features, audio_features, text_features, fused_representation)
70
+
71
+ def _create_perception_state(self, visual_features, audio_features, text_features, fused_representation):
72
+ # Create an attention weights dictionary
73
+ attention_weights = {
74
+ 'visual': 0.33,
75
+ 'audio': 0.33,
76
+ 'text': 0.34
77
+ }
78
+
79
+ return PerceptionState(
80
+ visual_data=visual_features,
81
+ audio_data=audio_features,
82
+ text_data=text_features,
83
+ context_vector=fused_representation,
84
+ attention_weights=attention_weights
85
+ )
src/core/ontological_database.py CHANGED
@@ -1,4 +1,4 @@
1
- from typing import Dict, List, Set, Optional
2
  import networkx as nx
3
 
4
  class OntologicalDatabase:
@@ -6,25 +6,40 @@ class OntologicalDatabase:
6
  self.knowledge_graph = nx.MultiDiGraph()
7
  self.relation_types = set()
8
  self.temporal_index = {}
9
-
10
- def add_knowledge(self, concept: str, properties: Dict[str, Any],
11
  relations: List[Dict[str, Any]] = None) -> None:
12
  self.knowledge_graph.add_node(concept, **properties)
13
  if relations:
14
  for relation in relations:
15
- self.add_relation(concept, relation)
16
-
17
- def query_knowledge(self, query: Dict[str, Any]) -> Dict[str, Any]:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  results = self._search_knowledge_graph(query)
19
  temporal_context = self._get_temporal_context(query)
20
  return self._integrate_results(results, temporal_context)
21
-
22
  def add_relation(self, source: str, target: str, relation_type: str, properties: Dict[str, Any]) -> None:
23
- self.knowledge_graph.add_edge(source, target,
24
- relation_type=relation_type,
25
  **properties)
26
  self.relation_types.add(relation_type)
27
-
28
  def query_knowledge(self, concept: str, relation_type: Optional[str] = None) -> Dict[str, Any]:
29
  if relation_type:
30
  return {
@@ -35,4 +50,4 @@ class OntologicalDatabase:
35
  return {
36
  'concept': concept,
37
  'properties': self.knowledge_graph.nodes[concept]
38
- }
 
1
+ from typing import Dict, List, Set, Optional, Any
2
  import networkx as nx
3
 
4
  class OntologicalDatabase:
 
6
  self.knowledge_graph = nx.MultiDiGraph()
7
  self.relation_types = set()
8
  self.temporal_index = {}
9
+
10
+ def add_knowledge(self, concept: str, properties: Dict[str, Any],
11
  relations: List[Dict[str, Any]] = None) -> None:
12
  self.knowledge_graph.add_node(concept, **properties)
13
  if relations:
14
  for relation in relations:
15
+ self.add_relation(concept, relation.get('target'),
16
+ relation.get('relation_type'),
17
+ relation.get('properties', {}))
18
+
19
+ def _search_knowledge_graph(self, query: Dict[str, Any]) -> Dict[str, Any]:
20
+ # Placeholder implementation
21
+ return {}
22
+
23
+ def _get_temporal_context(self, query: Dict[str, Any]) -> Dict[str, Any]:
24
+ # Placeholder implementation
25
+ return {}
26
+
27
+ def _integrate_results(self, results: Dict[str, Any],
28
+ temporal_context: Dict[str, Any]) -> Dict[str, Any]:
29
+ # Placeholder implementation
30
+ return results
31
+
32
+ def query_by_complex(self, query: Dict[str, Any]) -> Dict[str, Any]:
33
  results = self._search_knowledge_graph(query)
34
  temporal_context = self._get_temporal_context(query)
35
  return self._integrate_results(results, temporal_context)
36
+
37
  def add_relation(self, source: str, target: str, relation_type: str, properties: Dict[str, Any]) -> None:
38
+ self.knowledge_graph.add_edge(source, target,
39
+ relation_type=relation_type,
40
  **properties)
41
  self.relation_types.add(relation_type)
42
+
43
  def query_knowledge(self, concept: str, relation_type: Optional[str] = None) -> Dict[str, Any]:
44
  if relation_type:
45
  return {
 
50
  return {
51
  'concept': concept,
52
  'properties': self.knowledge_graph.nodes[concept]
53
+ }
src/core/phi_prime_calculator.py CHANGED
@@ -3,18 +3,28 @@ from typing import Dict, List, Any
3
  import torch
4
  import torch.nn as nn
5
 
 
 
 
 
 
 
 
 
 
 
6
  class PhiPrimeCalculator:
7
  def __init__(self, num_dimensions: int = 128):
8
  self.num_dimensions = num_dimensions
9
  self.integration_threshold = 0.7
10
  self.information_metrics = InformationMetrics()
11
  self.integration_analyzer = IntegrationAnalyzer()
12
-
13
  def compute(self, system_state: Dict[str, Any]) -> float:
14
  information_content = self.information_metrics.calculate(system_state)
15
  integration_level = self.integration_analyzer.analyze(system_state)
16
-
17
  return self._compute_phi_prime(information_content, integration_level)
18
-
19
  def _compute_phi_prime(self, information: float, integration: float) -> float:
20
- return (information * integration) / self.num_dimensions
 
3
  import torch
4
  import torch.nn as nn
5
 
6
+ class InformationMetrics:
7
+ def calculate(self, system_state: Dict[str, Any]) -> float:
8
+ # Placeholder implementation
9
+ return 1.0
10
+
11
+ class IntegrationAnalyzer:
12
+ def analyze(self, system_state: Dict[str, Any]) -> float:
13
+ # Placeholder implementation
14
+ return 0.8
15
+
16
  class PhiPrimeCalculator:
17
  def __init__(self, num_dimensions: int = 128):
18
  self.num_dimensions = num_dimensions
19
  self.integration_threshold = 0.7
20
  self.information_metrics = InformationMetrics()
21
  self.integration_analyzer = IntegrationAnalyzer()
22
+
23
  def compute(self, system_state: Dict[str, Any]) -> float:
24
  information_content = self.information_metrics.calculate(system_state)
25
  integration_level = self.integration_analyzer.analyze(system_state)
26
+
27
  return self._compute_phi_prime(information_content, integration_level)
28
+
29
  def _compute_phi_prime(self, information: float, integration: float) -> float:
30
+ return (information * integration) / self.num_dimensions
src/core/processing_pipeline.py CHANGED
@@ -1,6 +1,27 @@
1
  from dataclasses import dataclass
2
  from typing import Any, Dict, List
3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  @dataclass
5
  class ProcessingState:
6
  perception_data: Dict[str, Any]
@@ -14,9 +35,9 @@ class ProcessingPipeline:
14
  self.context_integrator = ContextIntegrator()
15
  self.consciousness_filter = ConsciousnessFilter()
16
  self.reflective_analyzer = ReflectiveAnalyzer()
17
-
18
  def process(self, input_data: Any) -> ProcessingState:
19
  perception = self.perception_encoder.encode(input_data)
20
  context = self.context_integrator.integrate(perception)
21
  filtered_state = self.consciousness_filter.filter(context)
22
- return self.reflective_analyzer.analyze(filtered_state)
 
1
  from dataclasses import dataclass
2
  from typing import Any, Dict, List
3
 
4
+ # Define the missing classes
5
+ class MultiModalEncoder:
6
+ def encode(self, input_data: Any) -> Dict[str, Any]:
7
+ # Implementation would go here
8
+ return {}
9
+
10
+ class ContextIntegrator:
11
+ def integrate(self, perception: Dict[str, Any]) -> Dict[str, Any]:
12
+ # Implementation would go here
13
+ return {}
14
+
15
+ class ConsciousnessFilter:
16
+ def filter(self, context: Dict[str, Any]) -> Any:
17
+ # Implementation would go here
18
+ return {}
19
+
20
+ class ReflectiveAnalyzer:
21
+ def analyze(self, filtered_state: Any) -> 'ProcessingState':
22
+ # Implementation would go here
23
+ return ProcessingState({}, {}, 0.0, {})
24
+
25
  @dataclass
26
  class ProcessingState:
27
  perception_data: Dict[str, Any]
 
35
  self.context_integrator = ContextIntegrator()
36
  self.consciousness_filter = ConsciousnessFilter()
37
  self.reflective_analyzer = ReflectiveAnalyzer()
38
+
39
  def process(self, input_data: Any) -> ProcessingState:
40
  perception = self.perception_encoder.encode(input_data)
41
  context = self.context_integrator.integrate(perception)
42
  filtered_state = self.consciousness_filter.filter(context)
43
+ return self.reflective_analyzer.analyze(filtered_state)
src/core/reflexive_layer.py CHANGED
@@ -1,6 +1,24 @@
1
  from dataclasses import dataclass
2
  from typing import Dict, List, Any
3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  @dataclass
5
  class ReflectionOutput:
6
  insights: Dict[str, Any]
@@ -14,12 +32,12 @@ class ReflexiveLayer:
14
  self.self_evaluation_system = SelfEvaluationSystem()
15
  self.consciousness_threshold = 0.7
16
  self.reflection_history = []
17
-
18
  def process_reflection(self, current_state):
19
  monitoring_results = self.meta_cognitive_monitor.analyze(current_state)
20
  evaluation_results = self.self_evaluation_system.evaluate(monitoring_results)
21
  return self._generate_reflection_output(monitoring_results, evaluation_results)
22
-
23
  def _generate_reflection_output(self, monitoring_results, evaluation_results):
24
  output = ReflectionOutput(
25
  insights=self._extract_insights(monitoring_results),
@@ -29,7 +47,7 @@ class ReflexiveLayer:
29
  )
30
  self.reflection_history.append(output)
31
  return output
32
-
33
  def _extract_insights(self, monitoring_results):
34
  return {
35
  'cognitive_patterns': self._analyze_cognitive_patterns(),
@@ -37,11 +55,19 @@ class ReflexiveLayer:
37
  'attention_distribution': monitoring_results.attention_focus,
38
  'processing_efficiency': monitoring_results.processing_efficiency
39
  }
40
-
41
  def _calculate_consciousness_state(self):
42
  # Implementation of consciousness state calculation
43
- pass
44
-
45
  def _compute_awareness_metrics(self):
46
  # Implementation of self-awareness metrics computation
47
- pass
 
 
 
 
 
 
 
 
 
1
  from dataclasses import dataclass
2
  from typing import Dict, List, Any
3
 
4
+ # Define missing classes
5
+ class MetaCognitiveMonitor:
6
+ def analyze(self, current_state):
7
+ # Placeholder implementation
8
+ class MonitoringResults:
9
+ def __init__(self):
10
+ self.attention_focus = {}
11
+ self.processing_efficiency = 0.8
12
+ return MonitoringResults()
13
+
14
+ class SelfEvaluationSystem:
15
+ def evaluate(self, monitoring_results):
16
+ # Placeholder implementation
17
+ class EvaluationResults:
18
+ def __init__(self):
19
+ self.recommendations = []
20
+ return EvaluationResults()
21
+
22
  @dataclass
23
  class ReflectionOutput:
24
  insights: Dict[str, Any]
 
32
  self.self_evaluation_system = SelfEvaluationSystem()
33
  self.consciousness_threshold = 0.7
34
  self.reflection_history = []
35
+
36
  def process_reflection(self, current_state):
37
  monitoring_results = self.meta_cognitive_monitor.analyze(current_state)
38
  evaluation_results = self.self_evaluation_system.evaluate(monitoring_results)
39
  return self._generate_reflection_output(monitoring_results, evaluation_results)
40
+
41
  def _generate_reflection_output(self, monitoring_results, evaluation_results):
42
  output = ReflectionOutput(
43
  insights=self._extract_insights(monitoring_results),
 
47
  )
48
  self.reflection_history.append(output)
49
  return output
50
+
51
  def _extract_insights(self, monitoring_results):
52
  return {
53
  'cognitive_patterns': self._analyze_cognitive_patterns(),
 
55
  'attention_distribution': monitoring_results.attention_focus,
56
  'processing_efficiency': monitoring_results.processing_efficiency
57
  }
58
+
59
  def _calculate_consciousness_state(self):
60
  # Implementation of consciousness state calculation
61
+ return 0.8 # Return a default float value instead of None
62
+
63
  def _compute_awareness_metrics(self):
64
  # Implementation of self-awareness metrics computation
65
+ return {"self_reflection": 0.7, "adaptability": 0.8} # Return a default dict instead of None
66
+
67
+ def _analyze_cognitive_patterns(self):
68
+ # Implementation for analyzing cognitive patterns
69
+ return {"pattern_recognition": 0.75}
70
+
71
+ def _analyze_learning_trends(self):
72
+ # Implementation for analyzing learning trends
73
+ return {"improvement_rate": 0.65}
src/core/self_evaluation.py CHANGED
@@ -1,5 +1,6 @@
1
  from enum import Enum
2
  from dataclasses import dataclass
 
3
 
4
  class EvaluationMetric(Enum):
5
  ACCURACY = "accuracy"
@@ -18,16 +19,28 @@ class SelfEvaluationSystem:
18
  def __init__(self):
19
  self.evaluation_history = []
20
  self.improvement_strategies = {}
21
-
22
  def evaluate(self, monitoring_results):
23
  evaluation = EvaluationResult(
24
  metrics={metric: 0.0 for metric in EvaluationMetric},
25
  recommendations=[],
26
  confidence_level=0.0
27
  )
28
-
29
  self._assess_performance(monitoring_results, evaluation)
30
  self._generate_recommendations(evaluation)
31
  self._update_history(evaluation)
32
-
33
- return evaluation
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  from enum import Enum
2
  from dataclasses import dataclass
3
+ from typing import Dict, List
4
 
5
  class EvaluationMetric(Enum):
6
  ACCURACY = "accuracy"
 
19
  def __init__(self):
20
  self.evaluation_history = []
21
  self.improvement_strategies = {}
22
+
23
  def evaluate(self, monitoring_results):
24
  evaluation = EvaluationResult(
25
  metrics={metric: 0.0 for metric in EvaluationMetric},
26
  recommendations=[],
27
  confidence_level=0.0
28
  )
29
+
30
  self._assess_performance(monitoring_results, evaluation)
31
  self._generate_recommendations(evaluation)
32
  self._update_history(evaluation)
33
+
34
+ return evaluation
35
+
36
+ def _assess_performance(self, monitoring_results, evaluation):
37
+ # Placeholder for performance assessment logic
38
+ pass
39
+
40
+ def _generate_recommendations(self, evaluation):
41
+ # Placeholder for recommendation generation logic
42
+ pass
43
+
44
+ def _update_history(self, evaluation):
45
+ # Add the evaluation to history
46
+ self.evaluation_history.append(evaluation)
src/core/self_evolution.py CHANGED
@@ -1,11 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  class SelfEvolutionFramework:
2
  def __init__(self):
3
  self.architecture_analyzer = ArchitectureAnalyzer()
4
  self.modification_planner = ModificationPlanner()
5
  self.safety_validator = SafetyValidator()
6
  self.evolution_executor = EvolutionExecutor()
7
-
8
- async def evolve_system(self,
9
  performance_metrics: Dict[str, float],
10
  system_state: Dict[str, Any]) -> Dict[str, Any]:
11
  analysis = await self.architecture_analyzer.analyze(system_state)
@@ -13,8 +35,8 @@ class SelfEvolutionFramework:
13
  analysis,
14
  performance_metrics
15
  )
16
-
17
  if await self.safety_validator.validate_modifications(modification_plan):
18
  return await self.evolution_executor.execute_evolution(modification_plan)
19
-
20
- return {'status': 'evolution_blocked', 'reason': 'safety_constraints'}
 
1
+ from typing import Dict, Any
2
+
3
+ class ArchitectureAnalyzer:
4
+ async def analyze(self, system_state):
5
+ # Implementation would go here
6
+ return {}
7
+
8
+ class ModificationPlanner:
9
+ async def generate_plan(self, analysis, performance_metrics):
10
+ # Implementation would go here
11
+ return {}
12
+
13
+ class SafetyValidator:
14
+ async def validate_modifications(self, modification_plan):
15
+ # Implementation would go here
16
+ return True
17
+
18
+ class EvolutionExecutor:
19
+ async def execute_evolution(self, modification_plan):
20
+ # Implementation would go here
21
+ return {'status': 'evolution_completed', 'changes': {}}
22
+
23
  class SelfEvolutionFramework:
24
  def __init__(self):
25
  self.architecture_analyzer = ArchitectureAnalyzer()
26
  self.modification_planner = ModificationPlanner()
27
  self.safety_validator = SafetyValidator()
28
  self.evolution_executor = EvolutionExecutor()
29
+
30
+ async def evolve_system(self,
31
  performance_metrics: Dict[str, float],
32
  system_state: Dict[str, Any]) -> Dict[str, Any]:
33
  analysis = await self.architecture_analyzer.analyze(system_state)
 
35
  analysis,
36
  performance_metrics
37
  )
38
+
39
  if await self.safety_validator.validate_modifications(modification_plan):
40
  return await self.evolution_executor.execute_evolution(modification_plan)
41
+
42
+ return {'status': 'evolution_blocked', 'reason': 'safety_constraints'}
src/core/semiotic_network.py CHANGED
@@ -1,8 +1,18 @@
1
  from dataclasses import dataclass
2
- from typing import Dict, List, Optional
3
  import networkx as nx
4
  import numpy as np
5
 
 
 
 
 
 
 
 
 
 
 
6
  @dataclass
7
  class SignNode:
8
  id: str
@@ -16,14 +26,36 @@ class SemioticNetworkBuilder:
16
  self.graph = nx.MultiDiGraph()
17
  self.meaning_extractor = MeaningExtractor()
18
  self.context_analyzer = ContextAnalyzer()
19
-
20
  def construct(self, input_data: Dict[str, Any]) -> nx.MultiDiGraph:
21
  signs = self._extract_signs(input_data)
22
  self._build_nodes(signs)
23
  self._establish_relations()
24
  return self._optimize_network()
25
-
26
  def _extract_signs(self, input_data: Dict[str, Any]) -> List[SignNode]:
27
  meanings = self.meaning_extractor.process(input_data)
28
  contexts = self.context_analyzer.analyze(input_data)
29
- return [self._create_sign_node(m, c) for m, c in zip(meanings, contexts)]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  from dataclasses import dataclass
2
+ from typing import Dict, List, Optional, Any
3
  import networkx as nx
4
  import numpy as np
5
 
6
+ class MeaningExtractor:
7
+ def process(self, input_data: Dict[str, Any]) -> List:
8
+ # Placeholder implementation
9
+ return []
10
+
11
+ class ContextAnalyzer:
12
+ def analyze(self, input_data: Dict[str, Any]) -> List:
13
+ # Placeholder implementation
14
+ return []
15
+
16
  @dataclass
17
  class SignNode:
18
  id: str
 
26
  self.graph = nx.MultiDiGraph()
27
  self.meaning_extractor = MeaningExtractor()
28
  self.context_analyzer = ContextAnalyzer()
29
+
30
  def construct(self, input_data: Dict[str, Any]) -> nx.MultiDiGraph:
31
  signs = self._extract_signs(input_data)
32
  self._build_nodes(signs)
33
  self._establish_relations()
34
  return self._optimize_network()
35
+
36
  def _extract_signs(self, input_data: Dict[str, Any]) -> List[SignNode]:
37
  meanings = self.meaning_extractor.process(input_data)
38
  contexts = self.context_analyzer.analyze(input_data)
39
+ return [self._create_sign_node(m, c) for m, c in zip(meanings, contexts)]
40
+
41
+ def _build_nodes(self, signs: List[SignNode]) -> None:
42
+ # Placeholder implementation
43
+ pass
44
+
45
+ def _establish_relations(self) -> None:
46
+ # Placeholder implementation
47
+ pass
48
+
49
+ def _optimize_network(self) -> nx.MultiDiGraph:
50
+ # Placeholder implementation
51
+ return self.graph
52
+
53
+ def _create_sign_node(self, meaning, context) -> SignNode:
54
+ # Placeholder implementation
55
+ return SignNode(
56
+ id="placeholder",
57
+ level="",
58
+ meaning_vector=np.array([]),
59
+ context={},
60
+ relations=[]
61
+ )
src/core/semiotic_processor.py CHANGED
@@ -26,7 +26,7 @@ class SemioticState:
26
 
27
  class SemioticNetworkBuilder:
28
  """Builds semiotic networks from input data, representing sign relationships."""
29
-
30
  def __init__(self):
31
  self.relation_encoder = nn.Sequential(
32
  nn.Linear(768, 256),
@@ -34,28 +34,28 @@ class SemioticNetworkBuilder:
34
  nn.Linear(256, 128)
35
  )
36
  self.graph_state = {}
37
-
38
  def construct(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
39
  """
40
  Construct a semiotic network from input data.
41
-
42
  Args:
43
  input_data: Dictionary containing sign and context information
44
-
45
  Returns:
46
  Dictionary containing the constructed semiotic network
47
  """
48
  encoded_signs = self._encode_signs(input_data.get("signs", []))
49
  context_embedding = self._process_context(input_data.get("context", {}))
50
  relations = self._build_relations(encoded_signs, context_embedding)
51
-
52
  return {
53
  "signs": encoded_signs,
54
  "context": context_embedding,
55
  "relations": relations,
56
  "meta_info": self._extract_meta_information(input_data)
57
  }
58
-
59
  def _encode_signs(self, signs: List[Any]) -> Dict[str, torch.Tensor]:
60
  """Encode individual signs into vector representations."""
61
  encoded = {}
@@ -63,12 +63,12 @@ class SemioticNetworkBuilder:
63
  sign_tensor = torch.randn(768) # Placeholder for actual encoding
64
  encoded[str(sign)] = self.relation_encoder(sign_tensor)
65
  return encoded
66
-
67
  def _process_context(self, context: Dict[str, Any]) -> torch.Tensor:
68
  """Process context information into an embedding."""
69
  # Placeholder implementation
70
  return torch.randn(128)
71
-
72
  def _build_relations(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, float]:
73
  """Build relationships between signs in the context."""
74
  relations = {}
@@ -78,7 +78,7 @@ class SemioticNetworkBuilder:
78
  relation_strength = torch.cosine_similarity(signs[sign1], signs[sign2], dim=0)
79
  relations[f"{sign1}-{sign2}"] = float(relation_strength)
80
  return relations
81
-
82
  def _extract_meta_information(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
83
  """Extract meta-information about the semiotic network."""
84
  return {
@@ -88,96 +88,96 @@ class SemioticNetworkBuilder:
88
 
89
  class SignInterpreter:
90
  """Interprets semiotic networks to extract meaning and relationships."""
91
-
92
  def __init__(self):
93
  self.interpretation_network = nn.Sequential(
94
  nn.Linear(128, 64),
95
  nn.ReLU(),
96
  nn.Linear(64, 32)
97
  )
98
-
99
  def interpret(self, network: Dict[str, Any]) -> Dict[str, Any]:
100
  """
101
  Interpret a semiotic network to extract meaningful patterns.
102
-
103
  Args:
104
  network: The semiotic network to interpret
105
-
106
  Returns:
107
  Dictionary containing interpretation results
108
  """
109
  signs = network["signs"]
110
  relations = network["relations"]
111
  context = network["context"]
112
-
113
  interpreted_meanings = self._interpret_meanings(signs, context)
114
  relation_patterns = self._analyze_relations(relations)
115
  contextual_insights = self._extract_contextual_insights(context)
116
-
117
  return {
118
  "meanings": interpreted_meanings,
119
  "patterns": relation_patterns,
120
  "contextual_insights": contextual_insights
121
  }
122
-
123
  def _interpret_meanings(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, Any]:
124
  """Extract meanings from signs in context."""
125
  return {sign: {"salience": 0.8, "certainty": 0.7} for sign in signs}
126
-
127
  def _analyze_relations(self, relations: Dict[str, float]) -> Dict[str, float]:
128
  """Analyze patterns in sign relations."""
129
  return {"coherence": 0.8, "complexity": 0.6}
130
-
131
  def _extract_contextual_insights(self, context: torch.Tensor) -> Dict[str, float]:
132
  """Extract insights from contextual information."""
133
  return {"relevance": 0.75, "specificity": 0.65}
134
 
135
  class SignGenerator:
136
  """Generates new signs based on interpretations and patterns."""
137
-
138
  def __init__(self):
139
  self.generator_network = nn.Sequential(
140
  nn.Linear(32, 64),
141
  nn.ReLU(),
142
  nn.Linear(64, 128)
143
  )
144
-
145
  def create_signs(self, interpretation: Dict[str, Any]) -> Dict[str, Any]:
146
  """
147
  Generate new signs based on interpretation.
148
-
149
  Args:
150
  interpretation: The interpretation to base generation on
151
-
152
  Returns:
153
  Dictionary containing generated signs and their properties
154
  """
155
  meanings = interpretation["meanings"]
156
  patterns = interpretation["patterns"]
157
-
158
  generated = self._generate_from_patterns(patterns)
159
  refined = self._refine_generated_signs(generated, meanings)
160
-
161
  return {
162
  "signs": refined,
163
  "confidence": self._assess_generation_quality(refined)
164
  }
165
-
166
  def _generate_from_patterns(self, patterns: Dict[str, float]) -> List[torch.Tensor]:
167
  """Generate initial signs from observed patterns."""
168
  return [torch.randn(128) for _ in range(3)] # Generate 3 new signs
169
-
170
  def _refine_generated_signs(self, signs: List[torch.Tensor], meanings: Dict[str, Any]) -> List[Dict[str, Any]]:
171
  """Refine generated signs based on existing meanings."""
172
  return [{"vector": sign, "quality": 0.7} for sign in signs]
173
-
174
  def _assess_generation_quality(self, signs: List[Dict[str, Any]]) -> float:
175
  """Assess the quality of generated signs."""
176
  return sum(sign["quality"] for sign in signs) / len(signs)
177
 
178
  class SemioticProcessor:
179
  """Processes semiotic signs to extract and generate meaning."""
180
-
181
  def __init__(self):
182
  self.sign_encoder = nn.Sequential(
183
  nn.Linear(768, 256), # Using proper input size (768)
@@ -187,50 +187,50 @@ class SemioticProcessor:
187
  self.network_builder = SemioticNetworkBuilder()
188
  self.interpreter = SignInterpreter()
189
  self.generator = SignGenerator()
190
-
191
  async def process(self, input_data: Dict[str, Any]) -> SemioticState:
192
  """
193
  Process input data to extract semiotic meaning and generate new signs.
194
-
195
  Args:
196
  input_data: Dictionary containing sign and context information
197
-
198
  Returns:
199
  SemioticState representing the processed state
200
  """
201
  # Build semiotic network
202
  network = self.network_builder.construct(input_data)
203
-
204
  # Interpret the network
205
  interpretation = self.interpreter.interpret(network)
206
-
207
  # Generate new signs if needed
208
  if self._requires_generation(interpretation):
209
  generated_signs = self.generator.create_signs(interpretation)
210
  return self._integrate_semiotic_state(interpretation, generated_signs)
211
-
212
  return self._create_semiotic_state(interpretation)
213
-
214
  def _requires_generation(self, interpretation: Dict[str, Any]) -> bool:
215
  """
216
  Determine if new sign generation is required based on interpretation.
217
-
218
  Args:
219
  interpretation: The current interpretation state
220
-
221
  Returns:
222
  Boolean indicating if generation is needed
223
  """
224
  patterns = interpretation.get("patterns", {})
225
  return patterns.get("coherence", 0) < 0.5 or len(interpretation.get("meanings", {})) < 3
226
-
227
  def _integrate_semiotic_state(self, interpretation: Dict[str, Any], generated_signs: Dict[str, Any]) -> SemioticState:
228
  """
229
  Integrate interpretation and generated signs into a semiotic state.
230
  """
231
  meaning_vector = np.random.rand(128) # Placeholder for actual meaning vector
232
  sign_vector = np.random.rand(128) # Placeholder for actual sign vector
233
-
234
  return SemioticState(
235
  sign_level=SignLevel.SEMANTIC,
236
  meaning_vector=meaning_vector,
@@ -240,7 +240,7 @@ class SemioticProcessor:
240
  context_embedding=np.random.rand(128),
241
  semantic_relations=interpretation.get("contextual_insights", {})
242
  )
243
-
244
  def _create_semiotic_state(self, interpretation: Dict[str, Any]) -> SemioticState:
245
  """Create a semiotic state from interpretation without generation."""
246
  return self._integrate_semiotic_state(interpretation, {"confidence": 0.8})
 
26
 
27
  class SemioticNetworkBuilder:
28
  """Builds semiotic networks from input data, representing sign relationships."""
29
+
30
  def __init__(self):
31
  self.relation_encoder = nn.Sequential(
32
  nn.Linear(768, 256),
 
34
  nn.Linear(256, 128)
35
  )
36
  self.graph_state = {}
37
+
38
  def construct(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
39
  """
40
  Construct a semiotic network from input data.
41
+
42
  Args:
43
  input_data: Dictionary containing sign and context information
44
+
45
  Returns:
46
  Dictionary containing the constructed semiotic network
47
  """
48
  encoded_signs = self._encode_signs(input_data.get("signs", []))
49
  context_embedding = self._process_context(input_data.get("context", {}))
50
  relations = self._build_relations(encoded_signs, context_embedding)
51
+
52
  return {
53
  "signs": encoded_signs,
54
  "context": context_embedding,
55
  "relations": relations,
56
  "meta_info": self._extract_meta_information(input_data)
57
  }
58
+
59
  def _encode_signs(self, signs: List[Any]) -> Dict[str, torch.Tensor]:
60
  """Encode individual signs into vector representations."""
61
  encoded = {}
 
63
  sign_tensor = torch.randn(768) # Placeholder for actual encoding
64
  encoded[str(sign)] = self.relation_encoder(sign_tensor)
65
  return encoded
66
+
67
  def _process_context(self, context: Dict[str, Any]) -> torch.Tensor:
68
  """Process context information into an embedding."""
69
  # Placeholder implementation
70
  return torch.randn(128)
71
+
72
  def _build_relations(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, float]:
73
  """Build relationships between signs in the context."""
74
  relations = {}
 
78
  relation_strength = torch.cosine_similarity(signs[sign1], signs[sign2], dim=0)
79
  relations[f"{sign1}-{sign2}"] = float(relation_strength)
80
  return relations
81
+
82
  def _extract_meta_information(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
83
  """Extract meta-information about the semiotic network."""
84
  return {
 
88
 
89
  class SignInterpreter:
90
  """Interprets semiotic networks to extract meaning and relationships."""
91
+
92
  def __init__(self):
93
  self.interpretation_network = nn.Sequential(
94
  nn.Linear(128, 64),
95
  nn.ReLU(),
96
  nn.Linear(64, 32)
97
  )
98
+
99
  def interpret(self, network: Dict[str, Any]) -> Dict[str, Any]:
100
  """
101
  Interpret a semiotic network to extract meaningful patterns.
102
+
103
  Args:
104
  network: The semiotic network to interpret
105
+
106
  Returns:
107
  Dictionary containing interpretation results
108
  """
109
  signs = network["signs"]
110
  relations = network["relations"]
111
  context = network["context"]
112
+
113
  interpreted_meanings = self._interpret_meanings(signs, context)
114
  relation_patterns = self._analyze_relations(relations)
115
  contextual_insights = self._extract_contextual_insights(context)
116
+
117
  return {
118
  "meanings": interpreted_meanings,
119
  "patterns": relation_patterns,
120
  "contextual_insights": contextual_insights
121
  }
122
+
123
  def _interpret_meanings(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, Any]:
124
  """Extract meanings from signs in context."""
125
  return {sign: {"salience": 0.8, "certainty": 0.7} for sign in signs}
126
+
127
  def _analyze_relations(self, relations: Dict[str, float]) -> Dict[str, float]:
128
  """Analyze patterns in sign relations."""
129
  return {"coherence": 0.8, "complexity": 0.6}
130
+
131
  def _extract_contextual_insights(self, context: torch.Tensor) -> Dict[str, float]:
132
  """Extract insights from contextual information."""
133
  return {"relevance": 0.75, "specificity": 0.65}
134
 
135
  class SignGenerator:
136
  """Generates new signs based on interpretations and patterns."""
137
+
138
  def __init__(self):
139
  self.generator_network = nn.Sequential(
140
  nn.Linear(32, 64),
141
  nn.ReLU(),
142
  nn.Linear(64, 128)
143
  )
144
+
145
  def create_signs(self, interpretation: Dict[str, Any]) -> Dict[str, Any]:
146
  """
147
  Generate new signs based on interpretation.
148
+
149
  Args:
150
  interpretation: The interpretation to base generation on
151
+
152
  Returns:
153
  Dictionary containing generated signs and their properties
154
  """
155
  meanings = interpretation["meanings"]
156
  patterns = interpretation["patterns"]
157
+
158
  generated = self._generate_from_patterns(patterns)
159
  refined = self._refine_generated_signs(generated, meanings)
160
+
161
  return {
162
  "signs": refined,
163
  "confidence": self._assess_generation_quality(refined)
164
  }
165
+
166
  def _generate_from_patterns(self, patterns: Dict[str, float]) -> List[torch.Tensor]:
167
  """Generate initial signs from observed patterns."""
168
  return [torch.randn(128) for _ in range(3)] # Generate 3 new signs
169
+
170
  def _refine_generated_signs(self, signs: List[torch.Tensor], meanings: Dict[str, Any]) -> List[Dict[str, Any]]:
171
  """Refine generated signs based on existing meanings."""
172
  return [{"vector": sign, "quality": 0.7} for sign in signs]
173
+
174
  def _assess_generation_quality(self, signs: List[Dict[str, Any]]) -> float:
175
  """Assess the quality of generated signs."""
176
  return sum(sign["quality"] for sign in signs) / len(signs)
177
 
178
  class SemioticProcessor:
179
  """Processes semiotic signs to extract and generate meaning."""
180
+
181
  def __init__(self):
182
  self.sign_encoder = nn.Sequential(
183
  nn.Linear(768, 256), # Using proper input size (768)
 
187
  self.network_builder = SemioticNetworkBuilder()
188
  self.interpreter = SignInterpreter()
189
  self.generator = SignGenerator()
190
+
191
  async def process(self, input_data: Dict[str, Any]) -> SemioticState:
192
  """
193
  Process input data to extract semiotic meaning and generate new signs.
194
+
195
  Args:
196
  input_data: Dictionary containing sign and context information
197
+
198
  Returns:
199
  SemioticState representing the processed state
200
  """
201
  # Build semiotic network
202
  network = self.network_builder.construct(input_data)
203
+
204
  # Interpret the network
205
  interpretation = self.interpreter.interpret(network)
206
+
207
  # Generate new signs if needed
208
  if self._requires_generation(interpretation):
209
  generated_signs = self.generator.create_signs(interpretation)
210
  return self._integrate_semiotic_state(interpretation, generated_signs)
211
+
212
  return self._create_semiotic_state(interpretation)
213
+
214
  def _requires_generation(self, interpretation: Dict[str, Any]) -> bool:
215
  """
216
  Determine if new sign generation is required based on interpretation.
217
+
218
  Args:
219
  interpretation: The current interpretation state
220
+
221
  Returns:
222
  Boolean indicating if generation is needed
223
  """
224
  patterns = interpretation.get("patterns", {})
225
  return patterns.get("coherence", 0) < 0.5 or len(interpretation.get("meanings", {})) < 3
226
+
227
  def _integrate_semiotic_state(self, interpretation: Dict[str, Any], generated_signs: Dict[str, Any]) -> SemioticState:
228
  """
229
  Integrate interpretation and generated signs into a semiotic state.
230
  """
231
  meaning_vector = np.random.rand(128) # Placeholder for actual meaning vector
232
  sign_vector = np.random.rand(128) # Placeholder for actual sign vector
233
+
234
  return SemioticState(
235
  sign_level=SignLevel.SEMANTIC,
236
  meaning_vector=meaning_vector,
 
240
  context_embedding=np.random.rand(128),
241
  semantic_relations=interpretation.get("contextual_insights", {})
242
  )
243
+
244
  def _create_semiotic_state(self, interpretation: Dict[str, Any]) -> SemioticState:
245
  """Create a semiotic state from interpretation without generation."""
246
  return self._integrate_semiotic_state(interpretation, {"confidence": 0.8})
src/core/sign_interpreter.py CHANGED
@@ -1,17 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  class SignInterpreter:
2
  def __init__(self):
3
  self.context_analyzer = ContextAnalyzer()
4
  self.meaning_extractor = MeaningExtractor()
5
  self.relation_mapper = RelationMapper()
6
-
7
  def interpret(self, semiotic_network: Dict[str, Any]) -> Dict[str, Any]:
8
  context = self.context_analyzer.analyze(semiotic_network)
9
  meaning = self.meaning_extractor.extract(semiotic_network, context)
10
  relations = self.relation_mapper.map(meaning, context)
11
-
12
  return {
13
  'context': context,
14
  'meaning': meaning,
15
  'relations': relations,
16
  'confidence': self._calculate_confidence(meaning, relations)
17
- }
 
 
 
 
 
1
+ from typing import Dict, Any
2
+
3
+ class ContextAnalyzer:
4
+ def analyze(self, semiotic_network):
5
+ # Implementation goes here
6
+ return {}
7
+
8
+ class MeaningExtractor:
9
+ def extract(self, semiotic_network, context):
10
+ # Implementation goes here
11
+ return {}
12
+
13
+ class RelationMapper:
14
+ def map(self, meaning, context):
15
+ # Implementation goes here
16
+ return {}
17
+
18
  class SignInterpreter:
19
  def __init__(self):
20
  self.context_analyzer = ContextAnalyzer()
21
  self.meaning_extractor = MeaningExtractor()
22
  self.relation_mapper = RelationMapper()
23
+
24
  def interpret(self, semiotic_network: Dict[str, Any]) -> Dict[str, Any]:
25
  context = self.context_analyzer.analyze(semiotic_network)
26
  meaning = self.meaning_extractor.extract(semiotic_network, context)
27
  relations = self.relation_mapper.map(meaning, context)
28
+
29
  return {
30
  'context': context,
31
  'meaning': meaning,
32
  'relations': relations,
33
  'confidence': self._calculate_confidence(meaning, relations)
34
+ }
35
+
36
+ def _calculate_confidence(self, meaning, relations):
37
+ # Implementation for confidence calculation
38
+ return 0.0
src/core/social_dynamics.py CHANGED
@@ -1,16 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  class SocialDynamicsModeler:
2
  def __init__(self):
3
  self.relationship_graph = RelationshipGraph()
4
  self.interaction_analyzer = InteractionAnalyzer()
5
  self.group_dynamics = GroupDynamicsProcessor()
6
-
7
- async def analyze_social_context(self,
8
  interaction_data: Dict[str, Any],
9
  social_context: Dict[str, Any]) -> Dict[str, Any]:
10
  relationships = self.relationship_graph.update(interaction_data)
11
  interaction_patterns = self.interaction_analyzer.process(interaction_data)
12
  group_state = self.group_dynamics.analyze(social_context)
13
-
14
  return {
15
  'social_model': self._integrate_social_information(
16
  relationships,
@@ -19,4 +36,16 @@ class SocialDynamicsModeler:
19
  ),
20
  'recommendations': self._generate_social_strategies(group_state),
21
  'predicted_dynamics': self._predict_social_evolution(relationships)
22
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, Any
2
+
3
+ class RelationshipGraph:
4
+ def update(self, interaction_data):
5
+ # Placeholder for implementation
6
+ return {}
7
+
8
+ class InteractionAnalyzer:
9
+ def process(self, interaction_data):
10
+ # Placeholder for implementation
11
+ return {}
12
+
13
+ class GroupDynamicsProcessor:
14
+ def analyze(self, social_context):
15
+ # Placeholder for implementation
16
+ return {}
17
+
18
  class SocialDynamicsModeler:
19
  def __init__(self):
20
  self.relationship_graph = RelationshipGraph()
21
  self.interaction_analyzer = InteractionAnalyzer()
22
  self.group_dynamics = GroupDynamicsProcessor()
23
+
24
+ async def analyze_social_context(self,
25
  interaction_data: Dict[str, Any],
26
  social_context: Dict[str, Any]) -> Dict[str, Any]:
27
  relationships = self.relationship_graph.update(interaction_data)
28
  interaction_patterns = self.interaction_analyzer.process(interaction_data)
29
  group_state = self.group_dynamics.analyze(social_context)
30
+
31
  return {
32
  'social_model': self._integrate_social_information(
33
  relationships,
 
36
  ),
37
  'recommendations': self._generate_social_strategies(group_state),
38
  'predicted_dynamics': self._predict_social_evolution(relationships)
39
+ }
40
+
41
+ def _integrate_social_information(self, relationships, interaction_patterns, group_state):
42
+ # Placeholder for implementation
43
+ return {}
44
+
45
+ def _generate_social_strategies(self, group_state):
46
+ # Placeholder for implementation
47
+ return []
48
+
49
+ def _predict_social_evolution(self, relationships):
50
+ # Placeholder for implementation
51
+ return {}
src/core/sparse_activation.py CHANGED
@@ -3,18 +3,43 @@ import torch.nn as nn
3
  from typing import Dict, Tuple, List
4
  import numpy as np
5
 
 
 
 
 
6
  class SparseActivationManager:
7
  def __init__(self, sparsity_threshold: float = 0.95):
8
  self.sparsity_threshold = sparsity_threshold
9
  self.activation_history = []
10
  self.pattern_analyzer = PatternAnalyzer()
11
-
12
  def compute_pattern(self, input_tensor: torch.Tensor) -> torch.Tensor:
13
  importance_scores = self._compute_importance_scores(input_tensor)
14
  activation_mask = self._generate_activation_mask(importance_scores)
15
  return self._apply_sparse_activation(input_tensor, activation_mask)
16
-
17
  def _compute_importance_scores(self, input_tensor: torch.Tensor) -> torch.Tensor:
18
  attention_weights = self._calculate_attention_weights(input_tensor)
19
  gradient_information = self._compute_gradient_information(input_tensor)
20
- return self._combine_importance_metrics(attention_weights, gradient_information)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  from typing import Dict, Tuple, List
4
  import numpy as np
5
 
6
+ class PatternAnalyzer:
7
+ def __init__(self):
8
+ pass
9
+
10
  class SparseActivationManager:
11
  def __init__(self, sparsity_threshold: float = 0.95):
12
  self.sparsity_threshold = sparsity_threshold
13
  self.activation_history = []
14
  self.pattern_analyzer = PatternAnalyzer()
15
+
16
  def compute_pattern(self, input_tensor: torch.Tensor) -> torch.Tensor:
17
  importance_scores = self._compute_importance_scores(input_tensor)
18
  activation_mask = self._generate_activation_mask(importance_scores)
19
  return self._apply_sparse_activation(input_tensor, activation_mask)
20
+
21
  def _compute_importance_scores(self, input_tensor: torch.Tensor) -> torch.Tensor:
22
  attention_weights = self._calculate_attention_weights(input_tensor)
23
  gradient_information = self._compute_gradient_information(input_tensor)
24
+ return self._combine_importance_metrics(attention_weights, gradient_information)
25
+
26
+ def _generate_activation_mask(self, importance_scores: torch.Tensor) -> torch.Tensor:
27
+ # Create a binary mask based on importance scores and sparsity threshold
28
+ return (importance_scores > self.sparsity_threshold).float()
29
+
30
+ def _apply_sparse_activation(self, input_tensor: torch.Tensor, activation_mask: torch.Tensor) -> torch.Tensor:
31
+ # Apply the activation mask to the input tensor
32
+ return input_tensor * activation_mask
33
+
34
+ def _calculate_attention_weights(self, input_tensor: torch.Tensor) -> torch.Tensor:
35
+ # Calculate attention weights for the input tensor
36
+ return torch.sigmoid(input_tensor)
37
+
38
+ def _compute_gradient_information(self, input_tensor: torch.Tensor) -> torch.Tensor:
39
+ # Compute gradient information for the input tensor
40
+ return torch.abs(input_tensor)
41
+
42
+ def _combine_importance_metrics(self, attention_weights: torch.Tensor,
43
+ gradient_information: torch.Tensor) -> torch.Tensor:
44
+ # Combine multiple importance metrics into a single score
45
+ return attention_weights * gradient_information
src/core/theory_of_mind.py CHANGED
@@ -10,28 +10,28 @@ class TheoryOfMind:
10
  nn.Linear(256, 128)
11
  )
12
  self.belief_system = {}
13
-
14
  def model_agent_mind(self,
15
  agent_data: Dict[str, Any],
16
  context: Dict[str, Any] = None) -> Dict[str, Any]:
17
  # Theory of Mind implementation
18
  mental_state = self._process_mental_state(agent_data)
19
  beliefs = self._update_belief_system(mental_state, context)
20
-
21
  return {
22
  'mental_state': mental_state,
23
  'beliefs': beliefs,
24
  'predicted_behavior': self._predict_behavior(mental_state, beliefs)
25
  }
26
-
27
- def _process_mental_state(self, agent_data: Dict[str, Any]):
28
  # Mental state processing implementation
29
- pass
30
-
31
- def _update_belief_system(self, mental_state: Any, context: Dict[str, Any] = None):
32
  # Belief system update implementation
33
- pass
34
-
35
- def _predict_behavior(self, mental_state: Any, beliefs: Dict[str, Any]):
36
  # Behavior prediction implementation
37
- pass
 
10
  nn.Linear(256, 128)
11
  )
12
  self.belief_system = {}
13
+
14
  def model_agent_mind(self,
15
  agent_data: Dict[str, Any],
16
  context: Dict[str, Any] = None) -> Dict[str, Any]:
17
  # Theory of Mind implementation
18
  mental_state = self._process_mental_state(agent_data)
19
  beliefs = self._update_belief_system(mental_state, context)
20
+
21
  return {
22
  'mental_state': mental_state,
23
  'beliefs': beliefs,
24
  'predicted_behavior': self._predict_behavior(mental_state, beliefs)
25
  }
26
+
27
+ def _process_mental_state(self, agent_data: Dict[str, Any]) -> Any:
28
  # Mental state processing implementation
29
+ return {} # Return empty dict instead of None
30
+
31
+ def _update_belief_system(self, mental_state: Any, context: Dict[str, Any] = None) -> Dict[str, Any]:
32
  # Belief system update implementation
33
+ return {} # Return empty dict instead of None
34
+
35
+ def _predict_behavior(self, mental_state: Any, beliefs: Dict[str, Any]) -> Any:
36
  # Behavior prediction implementation
37
+ return {} # Return empty dict instead of None
src/core/topology_aware_router.py CHANGED
@@ -1,11 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  class TopologyAwareRouter:
2
  def __init__(self):
3
  self.network_topology = NetworkTopology()
4
  self.routing_metrics = RoutingMetrics()
5
  self.optimization_engine = OptimizationEngine()
6
-
7
- def compute_optimal_route(self,
8
- source_expert: int,
9
  target_expert: int,
10
  data_size: int) -> List[int]:
11
  topology_state = self.network_topology.get_current_state()
@@ -15,4 +32,4 @@ class TopologyAwareRouter:
15
  target_expert,
16
  data_size
17
  )
18
- return self.optimization_engine.find_optimal_path(routing_costs)
 
1
+ from typing import List
2
+
3
+ class NetworkTopology:
4
+ def get_current_state(self):
5
+ # Placeholder for actual implementation
6
+ return {}
7
+
8
+ class RoutingMetrics:
9
+ def calculate_costs(self, topology_state, source_expert, target_expert, data_size):
10
+ # Placeholder for actual implementation
11
+ return {}
12
+
13
+ class OptimizationEngine:
14
+ def find_optimal_path(self, routing_costs):
15
+ # Placeholder for actual implementation
16
+ return []
17
+
18
  class TopologyAwareRouter:
19
  def __init__(self):
20
  self.network_topology = NetworkTopology()
21
  self.routing_metrics = RoutingMetrics()
22
  self.optimization_engine = OptimizationEngine()
23
+
24
+ def compute_optimal_route(self,
25
+ source_expert: int,
26
  target_expert: int,
27
  data_size: int) -> List[int]:
28
  topology_state = self.network_topology.get_current_state()
 
32
  target_expert,
33
  data_size
34
  )
35
+ return self.optimization_engine.find_optimal_path(routing_costs)
src/hardware/memory_hierarchy.py CHANGED
@@ -1,10 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  class MemoryHierarchy:
2
  def __init__(self):
3
  self.l1_cache = NeuromorphicCache(size="64GB")
4
  self.l2_cache = QuantumInspiredCache(size="256GB")
5
  self.l3_cache = DistributedCache(size="1TB")
6
  self.cache_manager = CacheCoherencyManager()
7
-
8
  async def access_memory(self, key: str, level: Optional[int] = None) -> Any:
9
  if level == 1:
10
  return await self.l1_cache.get(key)
@@ -12,9 +43,16 @@ class MemoryHierarchy:
12
  return await self.l2_cache.get(key)
13
  elif level == 3:
14
  return await self.l3_cache.get(key)
15
-
16
  return await self._smart_cache_access(key)
17
-
18
  async def _smart_cache_access(self, key: str) -> Any:
19
  cache_decision = self.cache_manager.determine_optimal_cache(key)
20
- return await self._retrieve_from_cache(key, cache_decision)
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Any
2
+
3
+ class NeuromorphicCache:
4
+ def __init__(self, size: str):
5
+ self.size = size
6
+
7
+ async def get(self, key: str) -> Any:
8
+ # Implementation would go here
9
+ pass
10
+
11
+ class QuantumInspiredCache:
12
+ def __init__(self, size: str):
13
+ self.size = size
14
+
15
+ async def get(self, key: str) -> Any:
16
+ # Implementation would go here
17
+ pass
18
+
19
+ class DistributedCache:
20
+ def __init__(self, size: str):
21
+ self.size = size
22
+
23
+ async def get(self, key: str) -> Any:
24
+ # Implementation would go here
25
+ pass
26
+
27
+ class CacheCoherencyManager:
28
+ def determine_optimal_cache(self, key: str) -> int:
29
+ # Implementation would go here
30
+ return 1 # Default to L1 cache
31
+
32
  class MemoryHierarchy:
33
  def __init__(self):
34
  self.l1_cache = NeuromorphicCache(size="64GB")
35
  self.l2_cache = QuantumInspiredCache(size="256GB")
36
  self.l3_cache = DistributedCache(size="1TB")
37
  self.cache_manager = CacheCoherencyManager()
38
+
39
  async def access_memory(self, key: str, level: Optional[int] = None) -> Any:
40
  if level == 1:
41
  return await self.l1_cache.get(key)
 
43
  return await self.l2_cache.get(key)
44
  elif level == 3:
45
  return await self.l3_cache.get(key)
46
+
47
  return await self._smart_cache_access(key)
48
+
49
  async def _smart_cache_access(self, key: str) -> Any:
50
  cache_decision = self.cache_manager.determine_optimal_cache(key)
51
+ if cache_decision == 1:
52
+ return await self.l1_cache.get(key)
53
+ elif cache_decision == 2:
54
+ return await self.l2_cache.get(key)
55
+ elif cache_decision == 3:
56
+ return await self.l3_cache.get(key)
57
+ else:
58
+ raise ValueError(f"Invalid cache level: {cache_decision}")
src/hardware/neural_processing_unit.py CHANGED
@@ -11,6 +11,16 @@ class NPUState:
11
  temperature: float
12
  processing_efficiency: float
13
 
 
 
 
 
 
 
 
 
 
 
14
  class NeuralProcessingUnit:
15
  def __init__(self, num_cores: int = 128):
16
  self.num_cores = num_cores
@@ -23,8 +33,12 @@ class NeuralProcessingUnit:
23
  )
24
  self.sparse_activation = SparseActivationManager()
25
  self.expert_router = ExpertRoutingSystem()
26
-
27
  async def process_neural_task(self, input_data: torch.Tensor) -> torch.Tensor:
28
  activation_pattern = self.sparse_activation.compute_pattern(input_data)
29
  expert_allocation = self.expert_router.allocate_experts(activation_pattern)
30
- return await self._execute_neural_computation(input_data, expert_allocation)
 
 
 
 
 
11
  temperature: float
12
  processing_efficiency: float
13
 
14
+ class SparseActivationManager:
15
+ def compute_pattern(self, input_data: torch.Tensor) -> torch.Tensor:
16
+ # Placeholder implementation
17
+ return input_data
18
+
19
+ class ExpertRoutingSystem:
20
+ def allocate_experts(self, activation_pattern: torch.Tensor) -> Dict[str, int]:
21
+ # Placeholder implementation
22
+ return {"expert1": 1, "expert2": 2}
23
+
24
  class NeuralProcessingUnit:
25
  def __init__(self, num_cores: int = 128):
26
  self.num_cores = num_cores
 
33
  )
34
  self.sparse_activation = SparseActivationManager()
35
  self.expert_router = ExpertRoutingSystem()
36
+
37
  async def process_neural_task(self, input_data: torch.Tensor) -> torch.Tensor:
38
  activation_pattern = self.sparse_activation.compute_pattern(input_data)
39
  expert_allocation = self.expert_router.allocate_experts(activation_pattern)
40
+ return await self._execute_neural_computation(input_data, expert_allocation)
41
+
42
+ async def _execute_neural_computation(self, input_data: torch.Tensor, expert_allocation: Dict[str, int]) -> torch.Tensor:
43
+ # Placeholder implementation
44
+ return input_data
src/model.py CHANGED
@@ -7,14 +7,14 @@ class HIMModel:
7
  self.config = config
8
  self.tokenizer = AutoTokenizer.from_pretrained(config.base_model)
9
  self.model = AutoModelForCausalLM.from_pretrained(config.base_model)
10
-
11
- def generate_response(self, input_text: str, system_message: str = None):
12
  # Prepare input with system message if provided
13
  if system_message:
14
  input_text = f"{system_message}\nUser: {input_text}\nHIM:"
15
-
16
  inputs = self.tokenizer(input_text, return_tensors="pt")
17
-
18
  outputs = self.model.generate(
19
  inputs["input_ids"],
20
  max_length=self.config.max_length,
@@ -22,5 +22,5 @@ class HIMModel:
22
  top_p=self.config.top_p,
23
  do_sample=True
24
  )
25
-
26
- return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
 
7
  self.config = config
8
  self.tokenizer = AutoTokenizer.from_pretrained(config.base_model)
9
  self.model = AutoModelForCausalLM.from_pretrained(config.base_model)
10
+
11
+ def generate_response(self, input_text: str, system_message: str = ""):
12
  # Prepare input with system message if provided
13
  if system_message:
14
  input_text = f"{system_message}\nUser: {input_text}\nHIM:"
15
+
16
  inputs = self.tokenizer(input_text, return_tensors="pt")
17
+
18
  outputs = self.model.generate(
19
  inputs["input_ids"],
20
  max_length=self.config.max_length,
 
22
  top_p=self.config.top_p,
23
  do_sample=True
24
  )
25
+
26
+ return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
src/model/consciousness_model.py CHANGED
@@ -6,20 +6,21 @@ import numpy as np
6
  class ConsciousnessModel(nn.Module):
7
  def __init__(self, config: Dict[str, Any]):
8
  super().__init__()
9
- self.self_awareness = nn.Linear(768, 256)
 
10
  self.meta_cognitive = nn.Linear(256, 128)
11
  self.phenomenal = nn.Linear(128, 64)
12
  self.integration = nn.Linear(64, 32)
13
-
14
  def forward(self, x: torch.Tensor) -> Dict[str, Any]:
15
  awareness = torch.relu(self.self_awareness(x))
16
  meta = torch.relu(self.meta_cognitive(awareness))
17
  phenomenal = torch.relu(self.phenomenal(meta))
18
  integrated = self.integration(phenomenal)
19
-
20
  return {
21
  'awareness': awareness,
22
  'meta_cognitive': meta,
23
  'phenomenal': phenomenal,
24
  'integrated': integrated
25
- }
 
6
  class ConsciousnessModel(nn.Module):
7
  def __init__(self, config: Dict[str, Any]):
8
  super().__init__()
9
+ input_dim = config.get('input_dim', 768)
10
+ self.self_awareness = nn.Linear(input_dim, 256)
11
  self.meta_cognitive = nn.Linear(256, 128)
12
  self.phenomenal = nn.Linear(128, 64)
13
  self.integration = nn.Linear(64, 32)
14
+
15
  def forward(self, x: torch.Tensor) -> Dict[str, Any]:
16
  awareness = torch.relu(self.self_awareness(x))
17
  meta = torch.relu(self.meta_cognitive(awareness))
18
  phenomenal = torch.relu(self.phenomenal(meta))
19
  integrated = self.integration(phenomenal)
20
+
21
  return {
22
  'awareness': awareness,
23
  'meta_cognitive': meta,
24
  'phenomenal': phenomenal,
25
  'integrated': integrated
26
+ }
src/model/him_model.py CHANGED
@@ -15,20 +15,21 @@ class HIMModel(nn.Module):
15
  self.emotional_processor = EmotionalProcessor()
16
  self.theory_of_mind = TheoryOfMind()
17
  self.semiotic_processor = SemioticProcessor()
18
-
19
  async def generate_response(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
20
  consciousness_state = await self.consciousness_kernel.process_consciousness_cycle(input_data)
21
- emotional_context = await self.emotional_processor.process_emotional_context(input_data)
22
- social_understanding = await self.theory_of_mind.model_agent_mind(input_data)
 
23
  semiotic_analysis = await self.semiotic_processor.process(input_data)
24
-
25
  return self._integrate_outputs(
26
  consciousness_state,
27
  emotional_context,
28
  social_understanding,
29
  semiotic_analysis
30
  )
31
-
32
  def _integrate_outputs(self, *states) -> Dict[str, Any]:
33
  # Integration implementation
34
  return {
@@ -37,4 +38,4 @@ class HIMModel(nn.Module):
37
  "emotional_context": states[1],
38
  "social_understanding": states[2],
39
  "semiotic_analysis": states[3]
40
- }
 
15
  self.emotional_processor = EmotionalProcessor()
16
  self.theory_of_mind = TheoryOfMind()
17
  self.semiotic_processor = SemioticProcessor()
18
+
19
  async def generate_response(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
20
  consciousness_state = await self.consciousness_kernel.process_consciousness_cycle(input_data)
21
+ # Fixed awaitable issues by removing await for non-awaitable methods
22
+ emotional_context = self.emotional_processor.process_emotional_context(input_data)
23
+ social_understanding = self.theory_of_mind.model_agent_mind(input_data)
24
  semiotic_analysis = await self.semiotic_processor.process(input_data)
25
+
26
  return self._integrate_outputs(
27
  consciousness_state,
28
  emotional_context,
29
  social_understanding,
30
  semiotic_analysis
31
  )
32
+
33
  def _integrate_outputs(self, *states) -> Dict[str, Any]:
34
  # Integration implementation
35
  return {
 
38
  "emotional_context": states[1],
39
  "social_understanding": states[2],
40
  "semiotic_analysis": states[3]
41
+ }