TeleologyHI commited on
Commit
dde614e
·
1 Parent(s): 70f8d75

Update HIM implementation with consciousness framework

Browse files
Files changed (3) hide show
  1. app.py +13 -10
  2. src/core/consciousness_kernel.py +3 -16
  3. src/model/him_model.py +13 -2
app.py CHANGED
@@ -1,4 +1,5 @@
1
  import gradio as gr
 
2
  from src.model.him_model import HIMModel
3
  from config.model_config import HIMConfig
4
  from config.environment_config import EnvironmentConfig
@@ -6,15 +7,16 @@ from config.environment_config import EnvironmentConfig
6
  def initialize_model():
7
  model_config = HIMConfig()
8
  env_config = EnvironmentConfig()
9
- return HIMModel(model_config)
 
 
10
 
11
- def chat(
12
- message: str,
13
- system_message: str = "You are a friendly Chatbot.",
14
- max_tokens: int = 512,
15
- temperature: float = 0.7,
16
- top_p: float = 0.95
17
- ):
18
  input_data = {
19
  "message": message,
20
  "system_message": system_message,
@@ -25,7 +27,8 @@ def chat(
25
  }
26
  }
27
 
28
- result = model.generate_response(input_data)
 
29
  return result["response"]
30
 
31
  model = initialize_model()
@@ -49,5 +52,5 @@ if __name__ == "__main__":
49
  interface.launch(
50
  server_name=env_config.api_host,
51
  server_port=env_config.api_port,
52
- enable_cors=env_config.enable_cors
53
  )
 
1
  import gradio as gr
2
+ import torch
3
  from src.model.him_model import HIMModel
4
  from config.model_config import HIMConfig
5
  from config.environment_config import EnvironmentConfig
 
7
  def initialize_model():
8
  model_config = HIMConfig()
9
  env_config = EnvironmentConfig()
10
+ device = torch.device("cuda" if torch.cuda.is_available() and env_config.device == "cuda" else "cpu")
11
+ model = HIMModel(model_config).to(device)
12
+ return model
13
 
14
+ def chat(message: str,
15
+ system_message: str = "You are a friendly Chatbot.",
16
+ max_tokens: int = 512,
17
+ temperature: float = 0.7,
18
+ top_p: float = 0.95):
19
+
 
20
  input_data = {
21
  "message": message,
22
  "system_message": system_message,
 
27
  }
28
  }
29
 
30
+ with torch.no_grad():
31
+ result = model.generate_response(input_data)
32
  return result["response"]
33
 
34
  model = initialize_model()
 
52
  interface.launch(
53
  server_name=env_config.api_host,
54
  server_port=env_config.api_port,
55
+ share=True
56
  )
src/core/consciousness_kernel.py CHANGED
@@ -1,8 +1,10 @@
1
  from dataclasses import dataclass
2
  from enum import Enum
3
  import torch
 
4
  import numpy as np
5
- from typing import Dict, List, Optional
 
6
 
7
  @dataclass
8
  class ConsciousnessState:
@@ -19,10 +21,6 @@ class ConsciousnessLevel(Enum):
19
  REFLECTIVE = "reflective_consciousness"
20
  INTEGRATED = "integrated_consciousness"
21
 
22
- from typing import Dict, List, Any
23
- import asyncio
24
- import torch
25
-
26
  class ConsciousnessKernel:
27
  def __init__(self):
28
  self.awareness_module = nn.Sequential(
@@ -32,17 +30,6 @@ class ConsciousnessKernel:
32
  )
33
  self.integration_module = nn.Linear(256, 128)
34
  self.state_history = []
35
-
36
- def process_consciousness_cycle(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
37
- awareness_state = self._process_awareness(input_data)
38
- integrated_state = self._integrate_information(awareness_state)
39
- self._update_history(integrated_state)
40
-
41
- return {
42
- 'current_state': integrated_state,
43
- 'awareness_level': self._calculate_awareness_level(integrated_state),
44
- 'consciousness_metrics': self._compute_phi_metrics(integrated_state)
45
- }
46
  self.awareness_engine = AwarenessEngine()
47
  self.integration_manager = IntegrationManager()
48
  self.self_model = DynamicSelfModel()
 
1
  from dataclasses import dataclass
2
  from enum import Enum
3
  import torch
4
+ import torch.nn as nn
5
  import numpy as np
6
+ from typing import Dict, List, Optional, Any
7
+ import asyncio
8
 
9
  @dataclass
10
  class ConsciousnessState:
 
21
  REFLECTIVE = "reflective_consciousness"
22
  INTEGRATED = "integrated_consciousness"
23
 
 
 
 
 
24
  class ConsciousnessKernel:
25
  def __init__(self):
26
  self.awareness_module = nn.Sequential(
 
30
  )
31
  self.integration_module = nn.Linear(256, 128)
32
  self.state_history = []
 
 
 
 
 
 
 
 
 
 
 
33
  self.awareness_engine = AwarenessEngine()
34
  self.integration_manager = IntegrationManager()
35
  self.self_model = DynamicSelfModel()
src/model/him_model.py CHANGED
@@ -9,12 +9,13 @@ from ..core.semiotic_processor import SemioticProcessor
9
  class HIMModel(nn.Module):
10
  def __init__(self, config: Dict[str, Any]):
11
  super().__init__()
 
12
  self.consciousness_kernel = ConsciousnessKernel()
13
  self.emotional_processor = EmotionalProcessor()
14
  self.theory_of_mind = TheoryOfMind()
15
  self.semiotic_processor = SemioticProcessor()
16
 
17
- def forward(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
18
  consciousness_state = self.consciousness_kernel.process_consciousness_cycle(input_data)
19
  emotional_context = self.emotional_processor.process_emotional_context(input_data)
20
  social_understanding = self.theory_of_mind.model_agent_mind(input_data)
@@ -25,4 +26,14 @@ class HIMModel(nn.Module):
25
  emotional_context,
26
  social_understanding,
27
  semiotic_analysis
28
- )
 
 
 
 
 
 
 
 
 
 
 
9
  class HIMModel(nn.Module):
10
  def __init__(self, config: Dict[str, Any]):
11
  super().__init__()
12
+ self.config = config
13
  self.consciousness_kernel = ConsciousnessKernel()
14
  self.emotional_processor = EmotionalProcessor()
15
  self.theory_of_mind = TheoryOfMind()
16
  self.semiotic_processor = SemioticProcessor()
17
 
18
+ def generate_response(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
19
  consciousness_state = self.consciousness_kernel.process_consciousness_cycle(input_data)
20
  emotional_context = self.emotional_processor.process_emotional_context(input_data)
21
  social_understanding = self.theory_of_mind.model_agent_mind(input_data)
 
26
  emotional_context,
27
  social_understanding,
28
  semiotic_analysis
29
+ )
30
+
31
+ def _integrate_outputs(self, *states) -> Dict[str, Any]:
32
+ # Integration implementation
33
+ return {
34
+ "response": "Integrated response based on multiple processing layers",
35
+ "consciousness_state": states[0],
36
+ "emotional_context": states[1],
37
+ "social_understanding": states[2],
38
+ "semiotic_analysis": states[3]
39
+ }