Spaces:
Sleeping
Sleeping
TeleologyHI
commited on
Commit
·
f669fe4
1
Parent(s):
40ff20d
Update HIM implementation with consciousness framework
Browse files
src/core/semiotic_processor.py
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
from enum import Enum
|
2 |
from dataclasses import dataclass
|
3 |
-
from typing import Dict, List, Optional
|
|
|
|
|
|
|
4 |
|
5 |
class SignLevel(Enum):
|
6 |
SYNTACTIC = "syntactic"
|
@@ -13,19 +16,8 @@ class SemioticState:
|
|
13 |
meaning_vector: np.ndarray
|
14 |
context_relations: Dict[str, float]
|
15 |
interpretation_confidence: float
|
16 |
-
|
17 |
-
from typing import Dict, Any, List
|
18 |
-
import numpy as np
|
19 |
-
import torch
|
20 |
-
import torch.nn as nn
|
21 |
-
from dataclasses import dataclass
|
22 |
-
|
23 |
-
@dataclass
|
24 |
-
class SemioticState:
|
25 |
sign_vector: np.ndarray
|
26 |
-
meaning_vector: np.ndarray
|
27 |
context_embedding: np.ndarray
|
28 |
-
interpretation_confidence: float
|
29 |
semantic_relations: Dict[str, float]
|
30 |
|
31 |
class SemioticProcessor:
|
@@ -35,22 +27,10 @@ class SemioticProcessor:
|
|
35 |
nn.ReLU(),
|
36 |
nn.Linear(256, 128)
|
37 |
)
|
38 |
-
self.meaning_network = {}
|
39 |
-
|
40 |
-
def process_signs(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
|
41 |
-
encoded_signs = self._encode_signs(input_data)
|
42 |
-
meanings = self._extract_meanings(encoded_signs)
|
43 |
-
context = self._analyze_context(input_data)
|
44 |
-
|
45 |
-
return {
|
46 |
-
'signs': encoded_signs,
|
47 |
-
'meanings': meanings,
|
48 |
-
'contextual_interpretation': self._interpret_context(meanings, context)
|
49 |
-
}
|
50 |
-
|
51 |
self.network_builder = SemioticNetworkBuilder()
|
52 |
self.interpreter = SignInterpreter()
|
53 |
self.generator = SignGenerator()
|
|
|
54 |
|
55 |
def process_signs(self, input_data: Dict[str, Any]) -> SemioticState:
|
56 |
network = self.network_builder.construct(input_data)
|
|
|
1 |
from enum import Enum
|
2 |
from dataclasses import dataclass
|
3 |
+
from typing import Dict, List, Optional, Any
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
|
8 |
class SignLevel(Enum):
|
9 |
SYNTACTIC = "syntactic"
|
|
|
16 |
meaning_vector: np.ndarray
|
17 |
context_relations: Dict[str, float]
|
18 |
interpretation_confidence: float
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
sign_vector: np.ndarray
|
|
|
20 |
context_embedding: np.ndarray
|
|
|
21 |
semantic_relations: Dict[str, float]
|
22 |
|
23 |
class SemioticProcessor:
|
|
|
27 |
nn.ReLU(),
|
28 |
nn.Linear(256, 128)
|
29 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
self.network_builder = SemioticNetworkBuilder()
|
31 |
self.interpreter = SignInterpreter()
|
32 |
self.generator = SignGenerator()
|
33 |
+
self.meaning_network = {}
|
34 |
|
35 |
def process_signs(self, input_data: Dict[str, Any]) -> SemioticState:
|
36 |
network = self.network_builder.construct(input_data)
|