from enum import Enum from dataclasses import dataclass from typing import Dict, List, Optional, Any import numpy as np import torch import torch.nn as nn class SignLevel(Enum): SYNTACTIC = "syntactic" SEMANTIC = "semantic" PRAGMATIC = "pragmatic" @dataclass class SemioticState: sign_level: SignLevel meaning_vector: np.ndarray context_relations: Dict[str, float] interpretation_confidence: float sign_vector: np.ndarray context_embedding: np.ndarray semantic_relations: Dict[str, float] class SemioticProcessor: def __init__(self): self.sign_encoder = nn.Sequential( nn.Linear(768, 256), nn.ReLU(), nn.Linear(256, 128) ) self.network_builder = SemioticNetworkBuilder() self.interpreter = SignInterpreter() self.generator = SignGenerator() self.meaning_network = {} def process_signs(self, input_data: Dict[str, Any]) -> SemioticState: network = self.network_builder.construct(input_data) interpretation = self.interpreter.interpret(network) if self._requires_generation(interpretation): generated_signs = self.generator.create_signs(interpretation) return self._integrate_semiotic_state(interpretation, generated_signs) return self._create_semiotic_state(interpretation)