from dataclasses import dataclass from enum import Enum import torch import numpy as np from typing import Dict, List, Optional @dataclass class ConsciousnessState: integration_level: float phi_prime: float awareness_vector: np.ndarray emotional_state: np.ndarray attention_focus: Dict[str, float] temporal_continuity: float class ConsciousnessLevel(Enum): PROTO = "proto_consciousness" FUNCTIONAL = "functional_consciousness" REFLECTIVE = "reflective_consciousness" INTEGRATED = "integrated_consciousness" from typing import Dict, List, Any import asyncio import torch class ConsciousnessKernel: def __init__(self): self.awareness_engine = AwarenessEngine() self.integration_manager = IntegrationManager() self.self_model = DynamicSelfModel() self.experience_simulator = ExperienceSimulator() async def process_consciousness_cycle(self, input_state: Dict[str, Any]) -> Dict[str, Any]: awareness = await self.awareness_engine.process(input_state) integrated_state = await self.integration_manager.integrate(awareness) self_update = await self.self_model.update(integrated_state) experience = await self.experience_simulator.simulate( awareness=awareness, integrated_state=integrated_state, self_model=self_update ) return self._generate_conscious_output(experience) def _initialize_consciousness_state(self) -> ConsciousnessState: return ConsciousnessState( integration_level=0.0, phi_prime=0.0, awareness_vector=np.zeros(self.awareness_dimension), emotional_state=np.zeros(self.emotional_dimension), attention_focus={}, temporal_continuity=0.0 ) def process_consciousness(self, input_state: Dict[str, Any]) -> Dict[str, Any]: phi_value = self.phi_prime_calculator.compute(input_state) attention_state = self.attention_system.allocate(input_state) meta_state = self.meta_monitor.evaluate(input_state) phenomenological_experience = self.phenomenological_simulator.simulate( phi_value, attention_state, meta_state ) return self._integrate_consciousness_state(phenomenological_experience)