import torch import torch.nn as nn from transformers import AutoModel, AutoConfig class FoundationLayer(nn.Module): def __init__(self, model_name: str = "gpt2-xl"): super().__init__() self.config = AutoConfig.from_pretrained(model_name) self.transformer = AutoModel.from_pretrained(model_name) self.sparse_router = MixtureOfExperts( num_experts=128, input_size=self.config.hidden_size ) def forward(self, input_ids, attention_mask=None): transformer_output = self.transformer( input_ids=input_ids, attention_mask=attention_mask ) routed_output = self.sparse_router(transformer_output.last_hidden_state) return self._process_consciousness_emergence(routed_output) class MixtureOfExperts(nn.Module): def __init__(self, num_experts: int, input_size: int): super().__init__() self.num_experts = num_experts self.gate = nn.Linear(input_size, num_experts) self.experts = nn.ModuleList([ nn.TransformerEncoderLayer( d_model=input_size, nhead=8 ) for _ in range(num_experts) ])