from dataclasses import dataclass import torch import numpy as np @dataclass class ConsciousnessState: phi_prime: float emotional_vector: np.ndarray attention_state: dict self_awareness_level: float class ConsciousnessMatrix: def __init__(self, num_processors=128): self.num_processors = num_processors self.emotional_dimension = 128 self.state = ConsciousnessState( phi_prime=0.0, emotional_vector=np.zeros(self.emotional_dimension), attention_state={}, self_awareness_level=0.0 ) def process_consciousness(self, input_state): # Implement consciousness processing based on IIT and Global Workspace Theory self._update_phi_prime() self._process_emotional_state() self._update_attention_allocation() self._evaluate_self_awareness() def _update_phi_prime(self): # Implementation of modified Φ (phi) metrics pass def _process_emotional_state(self): # 128-dimensional emotional state processing pass def _update_attention_allocation(self): # Update attention allocation based on current state pass def _evaluate_self_awareness(self): # Evaluate and update self-awareness level pass