from typing import Dict, Any import numpy as np from dataclasses import dataclass @dataclass class SelfState: """Represents the current state of the dynamic self model.""" identity_vector: np.ndarray belief_state: Dict[str, float] goal_hierarchy: Dict[str, float] emotional_state: Dict[str, float] metacognitive_state: Dict[str, Any] class DynamicSelfModel: """ Dynamic Self Model that maintains and updates the agent's self-representation. This includes identity, beliefs, goals, and emotional states. """ def __init__(self): # Initialize default state dimensions self.identity_dim = 256 self.state = SelfState( identity_vector=np.zeros(self.identity_dim), belief_state={ "self_awareness": 0.5, "world_model": 0.5, "agency": 0.5 }, goal_hierarchy={ "primary": 0.8, "secondary": 0.5, "tertiary": 0.3 }, emotional_state={ "valence": 0.0, "arousal": 0.0, "dominance": 0.0 }, metacognitive_state={ "confidence": 0.5, "uncertainty": 0.5, "reflection_level": 0.5 } ) async def update(self, integrated_state: Dict[str, Any]) -> Dict[str, Any]: """ Update the self model based on new integrated state information. Args: integrated_state: Dictionary containing the new integrated state information Returns: Dictionary containing the updated self model state """ # Update identity vector if provided if "identity" in integrated_state: self.state.identity_vector = self._update_identity( integrated_state["identity"] ) # Update belief state if "beliefs" in integrated_state: self.state.belief_state = self._update_beliefs( integrated_state["beliefs"] ) # Update goal hierarchy if "goals" in integrated_state: self.state.goal_hierarchy = self._update_goals( integrated_state["goals"] ) # Update emotional state if "emotions" in integrated_state: self.state.emotional_state = self._update_emotions( integrated_state["emotions"] ) # Update metacognitive state if "metacognition" in integrated_state: self.state.metacognitive_state = self._update_metacognition( integrated_state["metacognition"] ) return self._get_current_state() def _update_identity(self, new_identity: np.ndarray) -> np.ndarray: """Update the identity vector with new information.""" # Simple moving average update alpha = 0.3 # Learning rate return (1 - alpha) * self.state.identity_vector + alpha * new_identity def _update_beliefs(self, new_beliefs: Dict[str, float]) -> Dict[str, float]: """Update belief states with new information.""" updated_beliefs = self.state.belief_state.copy() for key, value in new_beliefs.items(): if key in updated_beliefs: updated_beliefs[key] = 0.7 * updated_beliefs[key] + 0.3 * value else: updated_beliefs[key] = value return updated_beliefs def _update_goals(self, new_goals: Dict[str, float]) -> Dict[str, float]: """Update goal hierarchy with new information.""" updated_goals = self.state.goal_hierarchy.copy() for key, value in new_goals.items(): if key in updated_goals: updated_goals[key] = 0.8 * updated_goals[key] + 0.2 * value else: updated_goals[key] = value return updated_goals def _update_emotions(self, new_emotions: Dict[str, float]) -> Dict[str, float]: """Update emotional state with new information.""" updated_emotions = self.state.emotional_state.copy() for key, value in new_emotions.items(): if key in updated_emotions: updated_emotions[key] = 0.5 * updated_emotions[key] + 0.5 * value else: updated_emotions[key] = value return updated_emotions def _update_metacognition(self, new_meta: Dict[str, Any]) -> Dict[str, Any]: """Update metacognitive state with new information.""" updated_meta = self.state.metacognitive_state.copy() for key, value in new_meta.items(): if key in updated_meta: if isinstance(value, float): updated_meta[key] = 0.6 * updated_meta[key] + 0.4 * value else: updated_meta[key] = value else: updated_meta[key] = value return updated_meta def _get_current_state(self) -> Dict[str, Any]: """Return the current state as a dictionary.""" return { "identity": self.state.identity_vector, "beliefs": self.state.belief_state, "goals": self.state.goal_hierarchy, "emotions": self.state.emotional_state, "metacognition": self.state.metacognitive_state }