from typing import Dict, Any, List from dataclasses import dataclass import torch import torch.nn as nn import asyncio @dataclass class EmotionalState: valence: float # Positive/negative dimension arousal: float # Energy/activation level dominance: float # Control/power dimension emotions: List[str] # Primary emotions present intensity: Dict[str, float] # Intensity of each emotion class EmotionalProcessor: def __init__(self): self.emotional_memory = {} self.emotion_vectors = self._initialize_emotion_vectors() def process_emotional_context(self, input_data: Dict[str, Any]) -> EmotionalState: # Process emotional context implementation # Returning a default emotional state to fix the return type error return EmotionalState( valence=0.0, arousal=0.0, dominance=0.0, emotions=[], intensity={} ) def _initialize_emotion_vectors(self) -> Dict[str, List[float]]: # Initialize emotion vectors implementation # Returning an empty dictionary to fix the return type error return {}