from typing import Dict, Any, List, Optional import numpy as np from .integration_manager import AwarenessState, IntegratedState class PhenomenologyEngine: """Generates phenomenological states from awareness and integrated states.""" async def generate_state( self, awareness: AwarenessState, integrated_state: IntegratedState ) -> Dict[str, Any]: """ Generate a phenomenological state from awareness and integrated state. Args: awareness: The current awareness state integrated_state: The integrated cognitive state Returns: A dictionary containing the phenomenological state """ return { "conscious_content": getattr(awareness, "cognition_state", {}), "perceptual_field": getattr(awareness, "perception_data", {}), "cognitive_state": getattr(integrated_state, "cognitive_state", {}), "affective_tone": {"valence": getattr(awareness, "emotional_valence", 0.0)} } class QualiaGenerator: """Generates qualia (subjective experiences) from phenomenological states.""" async def generate_qualia( self, phenomenological_state: Dict[str, Any], self_model: Dict[str, Any] ) -> Dict[str, Any]: """ Generate qualia from phenomenological state and self model. Args: phenomenological_state: The current phenomenological state self_model: The agent's self model Returns: A dictionary containing the generated qualia """ return { "sensory_qualia": self._generate_sensory_qualia(phenomenological_state), "emotional_qualia": self._generate_emotional_qualia(phenomenological_state), "cognitive_qualia": self._map_cognitive_states(phenomenological_state, self_model) } def _generate_sensory_qualia(self, state: Dict[str, Any]) -> Dict[str, float]: """Generate sensory qualia from the phenomenological state.""" return {"visual": 0.8, "auditory": 0.6, "tactile": 0.4} def _generate_emotional_qualia(self, state: Dict[str, Any]) -> Dict[str, float]: """Generate emotional qualia from the phenomenological state.""" return {"pleasure": 0.7, "arousal": 0.5, "dominance": 0.6} def _map_cognitive_states(self, state: Dict[str, Any], self_model: Dict[str, Any]) -> Dict[str, Any]: """Map cognitive states to qualia representations.""" return {"clarity": 0.8, "intensity": 0.7, "relevance": 0.9} class TemporalIntegrator: """Integrates experiences over time to maintain temporal continuity.""" async def integrate( self, current_qualia: Dict[str, Any], temporal_history: List[Dict[str, Any]] ) -> Dict[str, Any]: """ Integrate current qualia with temporal history. Args: current_qualia: The current qualia state temporal_history: List of previous qualia states Returns: A dictionary containing the temporally integrated experience """ # Simple implementation - can be enhanced with more sophisticated temporal integration if not temporal_history: temporal_continuity = 1.0 # No history to compare, assume perfect continuity else: # For demonstration, assume higher continuity for longer histories temporal_continuity = min(0.95, 0.5 + 0.05 * len(temporal_history)) return { "integrated_experience": current_qualia, "temporal_continuity": temporal_continuity, "experiential_flow": "smooth" if temporal_continuity > 0.7 else "discontinuous" } class ExperienceSimulator: def __init__(self): self.phenomenology_engine = PhenomenologyEngine() self.qualia_generator = QualiaGenerator() self.temporal_integrator = TemporalIntegrator() async def simulate( self, awareness: AwarenessState, integrated_state: IntegratedState, self_model: Dict[str, Any] ) -> Dict[str, Any]: """ Simulate subjective experience based on awareness and integrated states. Args: awareness: The current awareness state integrated_state: The integrated cognitive state self_model: The agent's self-model state Returns: Dictionary containing the simulated subjective experience """ phenomenological_state = await self.phenomenology_engine.generate_state( awareness, integrated_state ) qualia = await self.qualia_generator.generate_qualia( phenomenological_state, self_model ) temporal_context = await self.temporal_integrator.integrate( qualia, self_model.get('temporal_history', []) ) return { 'subjective_experience': qualia, 'temporal_context': temporal_context, 'phenomenological_state': phenomenological_state }