from dataclasses import dataclass from typing import Dict, Any, List import torch import torch.nn as nn @dataclass class PerceptionState: visual_data: torch.Tensor audio_data: torch.Tensor text_data: torch.Tensor context_vector: torch.Tensor attention_weights: Dict[str, float] class VisualProcessor(nn.Module): def __init__(self): super().__init__() # Visual processing layers would be defined here def forward(self, visual_input): # Process visual input return visual_input if visual_input is not None else torch.zeros(1) class AudioProcessor(nn.Module): def __init__(self): super().__init__() # Audio processing layers would be defined here def forward(self, audio_input): # Process audio input return audio_input if audio_input is not None else torch.zeros(1) class TextProcessor(nn.Module): def __init__(self): super().__init__() # Text processing layers would be defined here def forward(self, text_input): # Process text input return text_input if text_input is not None else torch.zeros(1) class ModalityFusion(nn.Module): def __init__(self): super().__init__() # Fusion layers would be defined here def forward(self, visual, audio, text): # Fusion logic return torch.cat([visual, audio, text], dim=-1) if all(x is not None for x in [visual, audio, text]) else torch.zeros(1) class MultiModalEncoder(nn.Module): def __init__(self): super().__init__() self.visual_encoder = VisualProcessor() self.audio_encoder = AudioProcessor() self.text_encoder = TextProcessor() self.fusion_layer = ModalityFusion() def forward(self, inputs: Dict[str, torch.Tensor]) -> PerceptionState: visual_features = self.visual_encoder(inputs.get('visual')) audio_features = self.audio_encoder(inputs.get('audio')) text_features = self.text_encoder(inputs.get('text')) fused_representation = self.fusion_layer( visual_features, audio_features, text_features ) return self._create_perception_state(visual_features, audio_features, text_features, fused_representation) def _create_perception_state(self, visual_features, audio_features, text_features, fused_representation): # Create an attention weights dictionary attention_weights = { 'visual': 0.33, 'audio': 0.33, 'text': 0.34 } return PerceptionState( visual_data=visual_features, audio_data=audio_features, text_data=text_features, context_vector=fused_representation, attention_weights=attention_weights )