import numpy as np from typing import Dict, List, Any import torch import torch.nn as nn class InformationMetrics: def calculate(self, system_state: Dict[str, Any]) -> float: # Placeholder implementation return 1.0 class IntegrationAnalyzer: def analyze(self, system_state: Dict[str, Any]) -> float: # Placeholder implementation return 0.8 class PhiPrimeCalculator: def __init__(self, num_dimensions: int = 128): self.num_dimensions = num_dimensions self.integration_threshold = 0.7 self.information_metrics = InformationMetrics() self.integration_analyzer = IntegrationAnalyzer() def compute(self, system_state: Dict[str, Any]) -> float: information_content = self.information_metrics.calculate(system_state) integration_level = self.integration_analyzer.analyze(system_state) return self._compute_phi_prime(information_content, integration_level) def _compute_phi_prime(self, information: float, integration: float) -> float: return (information * integration) / self.num_dimensions