from dataclasses import dataclass from typing import Dict, List, Optional, Any import networkx as nx import numpy as np class MeaningExtractor: def process(self, input_data: Dict[str, Any]) -> List: # Placeholder implementation return [] class ContextAnalyzer: def analyze(self, input_data: Dict[str, Any]) -> List: # Placeholder implementation return [] @dataclass class SignNode: id: str level: str meaning_vector: np.ndarray context: Dict[str, float] relations: List[str] class SemioticNetworkBuilder: def __init__(self): self.graph = nx.MultiDiGraph() self.meaning_extractor = MeaningExtractor() self.context_analyzer = ContextAnalyzer() def construct(self, input_data: Dict[str, Any]) -> nx.MultiDiGraph: signs = self._extract_signs(input_data) self._build_nodes(signs) self._establish_relations() return self._optimize_network() def _extract_signs(self, input_data: Dict[str, Any]) -> List[SignNode]: meanings = self.meaning_extractor.process(input_data) contexts = self.context_analyzer.analyze(input_data) return [self._create_sign_node(m, c) for m, c in zip(meanings, contexts)] def _build_nodes(self, signs: List[SignNode]) -> None: # Placeholder implementation pass def _establish_relations(self) -> None: # Placeholder implementation pass def _optimize_network(self) -> nx.MultiDiGraph: # Placeholder implementation return self.graph def _create_sign_node(self, meaning, context) -> SignNode: # Placeholder implementation return SignNode( id="placeholder", level="", meaning_vector=np.array([]), context={}, relations=[] )