from typing import Dict, Any import torch import torch.nn as nn import numpy as np class ConsciousnessModel(nn.Module): def __init__(self, config: Dict[str, Any]): super().__init__() input_dim = config.get('input_dim', 768) self.self_awareness = nn.Linear(input_dim, 256) self.meta_cognitive = nn.Linear(256, 128) self.phenomenal = nn.Linear(128, 64) self.integration = nn.Linear(64, 32) def forward(self, x: torch.Tensor) -> Dict[str, Any]: awareness = torch.relu(self.self_awareness(x)) meta = torch.relu(self.meta_cognitive(awareness)) phenomenal = torch.relu(self.phenomenal(meta)) integrated = self.integration(phenomenal) return { 'awareness': awareness, 'meta_cognitive': meta, 'phenomenal': phenomenal, 'integrated': integrated }