import gradio as gr from src.model.him_model import HIMModel from config.model_config import HIMConfig from config.environment_config import EnvironmentConfig def initialize_model(): model_config = HIMConfig() env_config = EnvironmentConfig() return HIMModel(model_config) def chat( message: str, system_message: str = "You are a friendly Chatbot.", max_tokens: int = 512, temperature: float = 0.7, top_p: float = 0.95 ): input_data = { "message": message, "system_message": system_message, "parameters": { "max_tokens": max_tokens, "temperature": temperature, "top_p": top_p } } result = model.generate_response(input_data) return result["response"] model = initialize_model() interface = gr.Interface( fn=chat, inputs=[ gr.Textbox(label="Message"), gr.Textbox(label="System Message", value="You are a friendly Chatbot."), gr.Slider(minimum=1, maximum=2048, value=512, label="Max Tokens"), gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top P") ], outputs=gr.Textbox(label="HIM Response"), title="Hybrid Intelligence Matrix (HIM)", description="Interact with the HIM system for advanced cognitive processing" ) if __name__ == "__main__": env_config = EnvironmentConfig() interface.launch( server_name=env_config.api_host, server_port=env_config.api_port, enable_cors=env_config.enable_cors )