from dataclasses import dataclass import torch import torch.nn as nn from typing import List, Dict @dataclass class ExpertAllocation: expert_id: int load_factor: float specialization_score: float capacity_available: float class ExpertRoutingSystem: def __init__(self, num_experts: int = 128): self.num_experts = num_experts self.experts = self._initialize_experts() self.router = TopologyAwareRouter() self.load_balancer = LoadBalancer() def allocate_experts(self, input_pattern: torch.Tensor) -> Dict[int, float]: task_requirements = self._analyze_task_requirements(input_pattern) available_experts = self._get_available_experts() return self._optimize_expert_allocation(task_requirements, available_experts) def _analyze_task_requirements(self, input_pattern: torch.Tensor) -> Dict[str, float]: complexity = self._estimate_task_complexity(input_pattern) specialization_needs = self._determine_specialization_needs(input_pattern) return { 'complexity': complexity, 'specialization': specialization_needs, 'resource_requirements': self._estimate_resource_needs(complexity) }