from dataclasses import dataclass from typing import Dict, Any, List import torch import torch.nn as nn @dataclass class PerceptionState: visual_data: torch.Tensor audio_data: torch.Tensor text_data: torch.Tensor context_vector: torch.Tensor attention_weights: Dict[str, float] class MultiModalEncoder(nn.Module): def __init__(self): super().__init__() self.visual_encoder = VisualProcessor() self.audio_encoder = AudioProcessor() self.text_encoder = TextProcessor() self.fusion_layer = ModalityFusion() def forward(self, inputs: Dict[str, torch.Tensor]) -> PerceptionState: visual_features = self.visual_encoder(inputs.get('visual')) audio_features = self.audio_encoder(inputs.get('audio')) text_features = self.text_encoder(inputs.get('text')) fused_representation = self.fusion_layer( visual_features, audio_features, text_features ) return self._create_perception_state(fused_representation)