from dataclasses import dataclass from typing import Dict, List, Optional import numpy as np import torch @dataclass class NPUState: load_level: float active_cores: int memory_usage: Dict[str, float] temperature: float processing_efficiency: float class NeuralProcessingUnit: def __init__(self, num_cores: int = 128): self.num_cores = num_cores self.state = NPUState( load_level=0.0, active_cores=0, memory_usage={}, temperature=0.0, processing_efficiency=1.0 ) self.sparse_activation = SparseActivationManager() self.expert_router = ExpertRoutingSystem() async def process_neural_task(self, input_data: torch.Tensor) -> torch.Tensor: activation_pattern = self.sparse_activation.compute_pattern(input_data) expert_allocation = self.expert_router.allocate_experts(activation_pattern) return await self._execute_neural_computation(input_data, expert_allocation)