import torch import torch.nn as nn import numpy as np from typing import Dict, List, Any, Optional from enum import Enum class SignLevel(Enum): ICONIC = 1 INDEXICAL = 2 SYMBOLIC = 3 SEMANTIC = 4 class SemioticState: """ Represents the state of semiotic processing with sign and meaning information. """ def __init__( self, sign_level: SignLevel, meaning_vector: np.ndarray, context_relations: Dict[str, float], interpretation_confidence: float, sign_vector: np.ndarray, context_embedding: np.ndarray, semantic_relations: Dict[str, float] ): self.sign_level = sign_level self.meaning_vector = meaning_vector self.context_relations = context_relations self.interpretation_confidence = interpretation_confidence self.sign_vector = sign_vector self.context_embedding = context_embedding self.semantic_relations = semantic_relations class SemioticNetworkBuilder: """Builds semiotic networks from input data, representing sign relationships.""" def __init__(self): self.relation_encoder = nn.Sequential( nn.Linear(768, 256), nn.ReLU(), nn.Linear(256, 128) ) self.graph_state = {} def construct(self, input_data: Dict[str, Any]) -> Dict[str, Any]: """ Construct a semiotic network from input data. Args: input_data: Dictionary containing sign and context information Returns: Dictionary containing the constructed semiotic network """ encoded_signs = self._encode_signs(input_data.get("signs", [])) context_embedding = self._process_context(input_data.get("context", {})) relations = self._build_relations(encoded_signs, context_embedding) return { "signs": encoded_signs, "context": context_embedding, "relations": relations, "meta_info": self._extract_meta_information(input_data) } def _encode_signs(self, signs: List[Any]) -> Dict[str, torch.Tensor]: """Encode individual signs into vector representations.""" encoded = {} for sign in signs: sign_tensor = torch.randn(768) # Placeholder for actual encoding encoded[str(sign)] = self.relation_encoder(sign_tensor) return encoded def _process_context(self, context: Dict[str, Any]) -> torch.Tensor: """Process context information into an embedding.""" # Placeholder implementation return torch.randn(128) def _build_relations(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, float]: """Build relationships between signs in the context.""" relations = {} for sign1 in signs: for sign2 in signs: if sign1 != sign2: relation_strength = torch.cosine_similarity(signs[sign1], signs[sign2], dim=0) relations[f"{sign1}-{sign2}"] = float(relation_strength) return relations def _extract_meta_information(self, input_data: Dict[str, Any]) -> Dict[str, Any]: """Extract meta-information about the semiotic network.""" return { "network_density": len(input_data.get("signs", [])) / 100, "context_richness": len(input_data.get("context", {})) / 100 } class SignInterpreter: """Interprets semiotic networks to extract meaning and relationships.""" def __init__(self): self.interpretation_network = nn.Sequential( nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 32) ) def interpret(self, network: Dict[str, Any]) -> Dict[str, Any]: """ Interpret a semiotic network to extract meaningful patterns. Args: network: The semiotic network to interpret Returns: Dictionary containing interpretation results """ signs = network["signs"] relations = network["relations"] context = network["context"] interpreted_meanings = self._interpret_meanings(signs, context) relation_patterns = self._analyze_relations(relations) contextual_insights = self._extract_contextual_insights(context) return { "meanings": interpreted_meanings, "patterns": relation_patterns, "contextual_insights": contextual_insights } def _interpret_meanings(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, Any]: """Extract meanings from signs in context.""" return {sign: {"salience": 0.8, "certainty": 0.7} for sign in signs} def _analyze_relations(self, relations: Dict[str, float]) -> Dict[str, float]: """Analyze patterns in sign relations.""" return {"coherence": 0.8, "complexity": 0.6} def _extract_contextual_insights(self, context: torch.Tensor) -> Dict[str, float]: """Extract insights from contextual information.""" return {"relevance": 0.75, "specificity": 0.65} class SignGenerator: """Generates new signs based on interpretations and patterns.""" def __init__(self): self.generator_network = nn.Sequential( nn.Linear(32, 64), nn.ReLU(), nn.Linear(64, 128) ) def create_signs(self, interpretation: Dict[str, Any]) -> Dict[str, Any]: """ Generate new signs based on interpretation. Args: interpretation: The interpretation to base generation on Returns: Dictionary containing generated signs and their properties """ meanings = interpretation["meanings"] patterns = interpretation["patterns"] generated = self._generate_from_patterns(patterns) refined = self._refine_generated_signs(generated, meanings) return { "signs": refined, "confidence": self._assess_generation_quality(refined) } def _generate_from_patterns(self, patterns: Dict[str, float]) -> List[torch.Tensor]: """Generate initial signs from observed patterns.""" return [torch.randn(128) for _ in range(3)] # Generate 3 new signs def _refine_generated_signs(self, signs: List[torch.Tensor], meanings: Dict[str, Any]) -> List[Dict[str, Any]]: """Refine generated signs based on existing meanings.""" return [{"vector": sign, "quality": 0.7} for sign in signs] def _assess_generation_quality(self, signs: List[Dict[str, Any]]) -> float: """Assess the quality of generated signs.""" return sum(sign["quality"] for sign in signs) / len(signs) class SemioticProcessor: def __init__(self): self.sign_encoder = nn.Sequential( nn.Linear(512, 256), nn.ReLU(), nn.Linear(256, 128) ) self.network_builder = SemioticNetworkBuilder() self.interpreter = SignInterpreter() self.generator = SignGenerator() async def process(self, input_data: Dict[str, Any]) -> SemioticState: # Build semiotic network network = self.network_builder.construct(input_data) # Interpret the network interpretation = self.interpreter.interpret(network) # Generate new signs if needed if self._requires_generation(interpretation): generated_signs = self.generator.create_signs(interpretation) return self._integrate_semiotic_state(interpretation, generated_signs) return self._create_semiotic_state(interpretation) def _requires_generation(self, interpretation: Dict[str, Any]) -> bool: """ Determine if new sign generation is required based on interpretation. Args: interpretation: The current interpretation state Returns: Boolean indicating if generation is needed """ patterns = interpretation.get("patterns", {}) return patterns.get("coherence", 0) < 0.5 or len(interpretation.get("meanings", {})) < 3 def _integrate_semiotic_state(self, interpretation: Dict[str, Any], generated_signs: Dict[str, Any]) -> SemioticState: """ Integrate interpretation and generated signs into a semiotic state. """ meaning_vector = np.random.rand(128) # Placeholder for actual meaning vector sign_vector = np.random.rand(128) # Placeholder for actual sign vector return SemioticState( sign_level=SignLevel.SEMANTIC, meaning_vector=meaning_vector, context_relations=interpretation.get("patterns", {}), interpretation_confidence=generated_signs.get("confidence", 0.5), sign_vector=sign_vector, context_embedding=np.random.rand(128), semantic_relations=interpretation.get("contextual_insights", {}) ) def _create_semiotic_state(self, interpretation: Dict[str, Any]) -> SemioticState: """Create a semiotic state from interpretation without generation.""" return self._integrate_semiotic_state(interpretation, {"confidence": 0.8})