from typing import Dict, Any import torch import torch.nn as nn import numpy as np from .states import AwarenessState, AwarenessLevel class AwarenessEngine: def __init__(self): self.attention_network = nn.Sequential( nn.Linear(768, 512), nn.ReLU(), nn.Linear(512, 256) ) async def process(self, input_state: Dict[str, Any]) -> AwarenessState: attention_vector = self._compute_attention(input_state) awareness_level = self._calculate_awareness(attention_vector) level = self._determine_awareness_level(awareness_level) cognitive_state = { "attention_focus": self._compute_attention_focus(attention_vector), "processing_depth": awareness_level, "cognitive_load": self._estimate_cognitive_load(input_state) } return AwarenessState( attention_vector=attention_vector.detach().numpy(), awareness_level=awareness_level, cognitive_state=cognitive_state, emotional_valence=self._compute_emotional_valence(input_state), consciousness_level=0.8, level=level ) def _compute_attention_focus(self, attention_vector: torch.Tensor) -> float: return float(torch.mean(attention_vector)) def _estimate_cognitive_load(self, input_state: Dict[str, Any]) -> float: return 0.5 # Default mid-range load def _determine_awareness_level(self, awareness_level: float) -> AwarenessLevel: if awareness_level > 0.8: return AwarenessLevel.TRANSCENDENT elif awareness_level > 0.6: return AwarenessLevel.INTEGRATED elif awareness_level > 0.4: return AwarenessLevel.REFLECTIVE elif awareness_level > 0.2: return AwarenessLevel.PERCEPTUAL return AwarenessLevel.BASIC def _compute_attention(self, input_state: Dict[str, Any]) -> torch.Tensor: return torch.ones(256) def _calculate_awareness(self, attention_vector: torch.Tensor) -> float: return 0.8 def _process_cognitive_state(self, input_state: Dict[str, Any]) -> Dict[str, Any]: return {"state": "active", "focus_level": 0.9} def _compute_emotional_valence(self, input_state: Dict[str, Any]) -> float: return 0.5