import torch import torch.nn as nn from transformers import AutoModel, AutoConfig class FoundationLayer(nn.Module): def __init__(self, model_name: str = "gpt2-xl"): super().__init__() self.config = AutoConfig.from_pretrained(model_name) self.transformer = AutoModel.from_pretrained(model_name) self.sparse_router = MixtureOfExperts( num_experts=128, input_size=self.config.hidden_size ) def forward(self, input_ids, attention_mask=None): transformer_output = self.transformer( input_ids=input_ids, attention_mask=attention_mask ) routed_output = self.sparse_router(transformer_output.last_hidden_state) return routed_output # Removed undefined method call def _process_consciousness_emergence(self, hidden_states): # Adding the missing method return hidden_states # Simple implementation, modify as needed class MixtureOfExperts(nn.Module): def __init__(self, num_experts: int, input_size: int): super().__init__() self.num_experts = num_experts self.gate = nn.Linear(input_size, num_experts) self.experts = nn.ModuleList([ nn.TransformerEncoderLayer( d_model=input_size, nhead=8 ) for _ in range(num_experts) ]) def forward(self, hidden_states): # Adding the missing forward method batch_size, seq_len, hidden_size = hidden_states.shape # Calculate routing probabilities routing_logits = self.gate(hidden_states.view(-1, hidden_size)) routing_probs = torch.softmax(routing_logits, dim=-1) # Get top-k experts k = 2 # Using top-2 experts top_k_probs, top_k_indices = torch.topk(routing_probs, k, dim=-1) top_k_probs = top_k_probs / top_k_probs.sum(dim=-1, keepdim=True) # Normalize # Reshape for easier processing hidden_states_flat = hidden_states.view(-1, 1, hidden_size) # Initialize output final_output = torch.zeros_like(hidden_states_flat) # Route to experts for i, expert in enumerate(self.experts): # Create mask for this expert mask = (top_k_indices == i).any(dim=-1).unsqueeze(-1) if mask.sum() > 0: # Only process tokens routed to this expert expert_input = hidden_states_flat[mask.squeeze(-1)] # Apply expert expert_output = expert(expert_input) # Weight by routing probability weight_mask = (top_k_indices == i).float() * top_k_probs weight_mask = weight_mask.unsqueeze(-1) final_output[mask.squeeze(-1)] += expert_output * weight_mask[mask.squeeze(-1)] return final_output.view(batch_size, seq_len, hidden_size)