from dataclasses import dataclass from typing import Dict, List, Any # Define missing classes class MetaCognitiveMonitor: def analyze(self, current_state): # Placeholder implementation class MonitoringResults: def __init__(self): self.attention_focus = {} self.processing_efficiency = 0.8 return MonitoringResults() class SelfEvaluationSystem: def evaluate(self, monitoring_results): # Placeholder implementation class EvaluationResults: def __init__(self): self.recommendations = [] return EvaluationResults() @dataclass class ReflectionOutput: insights: Dict[str, Any] adjustments: List[str] consciousness_state: float self_awareness_metrics: Dict[str, float] class ReflexiveLayer: def __init__(self): self.meta_cognitive_monitor = MetaCognitiveMonitor() self.self_evaluation_system = SelfEvaluationSystem() self.consciousness_threshold = 0.7 self.reflection_history = [] def process_reflection(self, current_state): monitoring_results = self.meta_cognitive_monitor.analyze(current_state) evaluation_results = self.self_evaluation_system.evaluate(monitoring_results) return self._generate_reflection_output(monitoring_results, evaluation_results) def _generate_reflection_output(self, monitoring_results, evaluation_results): output = ReflectionOutput( insights=self._extract_insights(monitoring_results), adjustments=evaluation_results.recommendations, consciousness_state=self._calculate_consciousness_state(), self_awareness_metrics=self._compute_awareness_metrics() ) self.reflection_history.append(output) return output def _extract_insights(self, monitoring_results): return { 'cognitive_patterns': self._analyze_cognitive_patterns(), 'learning_trends': self._analyze_learning_trends(), 'attention_distribution': monitoring_results.attention_focus, 'processing_efficiency': monitoring_results.processing_efficiency } def _calculate_consciousness_state(self): # Implementation of consciousness state calculation return 0.8 # Return a default float value instead of None def _compute_awareness_metrics(self): # Implementation of self-awareness metrics computation return {"self_reflection": 0.7, "adaptability": 0.8} # Return a default dict instead of None def _analyze_cognitive_patterns(self): # Implementation for analyzing cognitive patterns return {"pattern_recognition": 0.75} def _analyze_learning_trends(self): # Implementation for analyzing learning trends return {"improvement_rate": 0.65}