import torch import torch.nn as nn from typing import Dict, Tuple, List import numpy as np class PatternAnalyzer: def __init__(self): pass class SparseActivationManager: def __init__(self, sparsity_threshold: float = 0.95): self.sparsity_threshold = sparsity_threshold self.activation_history = [] self.pattern_analyzer = PatternAnalyzer() def compute_pattern(self, input_tensor: torch.Tensor) -> torch.Tensor: importance_scores = self._compute_importance_scores(input_tensor) activation_mask = self._generate_activation_mask(importance_scores) return self._apply_sparse_activation(input_tensor, activation_mask) def _compute_importance_scores(self, input_tensor: torch.Tensor) -> torch.Tensor: attention_weights = self._calculate_attention_weights(input_tensor) gradient_information = self._compute_gradient_information(input_tensor) return self._combine_importance_metrics(attention_weights, gradient_information) def _generate_activation_mask(self, importance_scores: torch.Tensor) -> torch.Tensor: # Create a binary mask based on importance scores and sparsity threshold return (importance_scores > self.sparsity_threshold).float() def _apply_sparse_activation(self, input_tensor: torch.Tensor, activation_mask: torch.Tensor) -> torch.Tensor: # Apply the activation mask to the input tensor return input_tensor * activation_mask def _calculate_attention_weights(self, input_tensor: torch.Tensor) -> torch.Tensor: # Calculate attention weights for the input tensor return torch.sigmoid(input_tensor) def _compute_gradient_information(self, input_tensor: torch.Tensor) -> torch.Tensor: # Compute gradient information for the input tensor return torch.abs(input_tensor) def _combine_importance_metrics(self, attention_weights: torch.Tensor, gradient_information: torch.Tensor) -> torch.Tensor: # Combine multiple importance metrics into a single score return attention_weights * gradient_information