Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +61 -38
src/streamlit_app.py
CHANGED
@@ -1,40 +1,63 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
"""
|
7 |
-
# Welcome to Streamlit!
|
8 |
-
|
9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
11 |
-
forums](https://discuss.streamlit.io).
|
12 |
-
|
13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
14 |
-
"""
|
15 |
-
|
16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
18 |
-
|
19 |
-
indices = np.linspace(0, 1, num_points)
|
20 |
-
theta = 2 * np.pi * num_turns * indices
|
21 |
-
radius = indices
|
22 |
-
|
23 |
-
x = radius * np.cos(theta)
|
24 |
-
y = radius * np.sin(theta)
|
25 |
-
|
26 |
-
df = pd.DataFrame({
|
27 |
-
"x": x,
|
28 |
-
"y": y,
|
29 |
-
"idx": indices,
|
30 |
-
"rand": np.random.randn(num_points),
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from PIL import Image, ImageFilter, ImageEnhance
|
3 |
+
import tempfile
|
4 |
+
import os
|
5 |
+
import easyocr
|
6 |
+
from transformers import MT5ForConditionalGeneration, MT5Tokenizer, pipeline
|
7 |
+
|
8 |
+
# Load tokenizer and model once at startup with proper config to avoid warnings
|
9 |
+
tokenizer = MT5Tokenizer.from_pretrained("google/mt5-small", legacy=False, use_fast=False)
|
10 |
+
model = MT5ForConditionalGeneration.from_pretrained("google/mt5-small")
|
11 |
+
pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
|
12 |
+
|
13 |
+
# Preprocess uploaded image to improve OCR accuracy
|
14 |
+
def preprocess_image_pillow(image):
|
15 |
+
img = image.convert("L") # Grayscale
|
16 |
+
width, height = img.size
|
17 |
+
img = img.resize((width * 2, height * 2), Image.LANCZOS)
|
18 |
+
enhancer = ImageEnhance.Contrast(img)
|
19 |
+
img = enhancer.enhance(2.0)
|
20 |
+
img = img.filter(ImageFilter.SHARPEN)
|
21 |
+
return img
|
22 |
+
|
23 |
+
# Streamlit App UI
|
24 |
+
st.set_page_config(page_title="π Telugu OCR & Correction", layout="centered")
|
25 |
+
st.title("π Telugu Handwriting to Typed Text")
|
26 |
+
|
27 |
+
uploaded_file = st.file_uploader("π€ Upload Telugu handwritten image", type=["png", "jpg", "jpeg"])
|
28 |
+
|
29 |
+
if uploaded_file:
|
30 |
+
image = Image.open(uploaded_file).convert("RGB")
|
31 |
+
enhanced_image = preprocess_image_pillow(image)
|
32 |
+
st.image(enhanced_image, caption="Preprocessed Image", use_container_width=True)
|
33 |
+
|
34 |
+
# Save temporarily for EasyOCR
|
35 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp:
|
36 |
+
enhanced_image.save(temp.name)
|
37 |
+
|
38 |
+
try:
|
39 |
+
reader = easyocr.Reader(['te'], gpu=False)
|
40 |
+
results = reader.readtext(temp.name)
|
41 |
+
|
42 |
+
raw_text = "\n".join([text for (_, text, _) in results])
|
43 |
+
|
44 |
+
st.markdown("### π OCR Extracted Text")
|
45 |
+
st.text_area("π Telugu OCR", raw_text, height=150)
|
46 |
+
|
47 |
+
# Generate correction using mT5
|
48 |
+
if raw_text.strip():
|
49 |
+
st.markdown("### β
LLM Corrected Telugu Text")
|
50 |
+
prompt = f"Correct the following Telugu text spelling and grammar:\n{raw_text}"
|
51 |
+
try:
|
52 |
+
response = pipe(prompt, max_new_tokens=256, do_sample=False)[0]['generated_text']
|
53 |
+
st.text_area("π€ Corrected Text", response, height=150)
|
54 |
+
st.download_button("β¬οΈ Download", response, file_name="corrected_telugu.txt")
|
55 |
+
except Exception as e:
|
56 |
+
st.error(f"LLM Correction Error: {e}")
|
57 |
+
else:
|
58 |
+
st.warning("OCR did not extract any usable Telugu text.")
|
59 |
+
finally:
|
60 |
+
# Always remove the temp file
|
61 |
+
if os.path.exists(temp.name):
|
62 |
+
os.remove(temp.name)
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|