import math import torch import torch.nn as nn from einops import repeat from timm.models.layers import to_2tuple class PatchEmbed(nn.Module): """ 2D Image to Patch Embedding Image to Patch Embedding using Conv2d A convolution based approach to patchifying a 2D image w/ embedding projection. Based on the impl in https://github.com/google-research/vision_transformer Hacked together by / Copyright 2020 Ross Wightman Remove the _assert function in forward function to be compatible with multi-resolution images. """ def __init__( self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True, bias=True, ): super().__init__() if isinstance(img_size, int): img_size = to_2tuple(img_size) elif isinstance(img_size, (tuple, list)) and len(img_size) == 2: img_size = tuple(img_size) else: raise ValueError(f"img_size must be int or tuple/list of length 2. Got {img_size}") patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.num_patches = self.grid_size[0] * self.grid_size[1] self.flatten = flatten self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias) self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() def update_image_size(self, img_size): self.img_size = img_size self.grid_size = (img_size[0] // self.patch_size[0], img_size[1] // self.patch_size[1]) self.num_patches = self.grid_size[0] * self.grid_size[1] def forward(self, x): # B, C, H, W = x.shape # _assert(H == self.img_size[0], f"Input image height ({H}) doesn't match model ({self.img_size[0]}).") # _assert(W == self.img_size[1], f"Input image width ({W}) doesn't match model ({self.img_size[1]}).") x = self.proj(x) if self.flatten: x = x.flatten(2).transpose(1, 2) # BCHW -> BNC x = self.norm(x) return x def timestep_embedding(t, dim, max_period=10000, repeat_only=False): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py if not repeat_only: half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=t.device) # size: [dim/2], 一个指数衰减的曲线 args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat( [embedding, torch.zeros_like(embedding[:, :1])], dim=-1 ) else: embedding = repeat(t, "b -> b d", d=dim) return embedding class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256, out_size=None): super().__init__() if out_size is None: out_size = hidden_size self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, out_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size def forward(self, t): t_freq = timestep_embedding(t, self.frequency_embedding_size).type(self.mlp[0].weight.dtype) t_emb = self.mlp(t_freq) return t_emb