File size: 23,530 Bytes
388da1a
184193d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
388da1a
184193d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
388da1a
184193d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
388da1a
 
184193d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
388da1a
184193d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
import spaces
import os
import json
import uuid
import time
import numpy as np
import torch
import fpsample
import fast_simplification
import matplotlib.pyplot as plt
cmap = plt.get_cmap("hsv")
from torchvision.transforms import v2
from pytorch_lightning import seed_everything
from PIL import Image
from omegaconf import OmegaConf
from einops import rearrange
from scipy.spatial.transform import Rotation
from safetensors import safe_open
from huggingface_hub import hf_hub_download

from transformers import AutoModelForImageSegmentation
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler

from freesplatter.hunyuan.hunyuan3d_mvd_std_pipeline import HunYuan3D_MVD_Std_Pipeline
from freesplatter.utils.mesh import Mesh
from freesplatter.utils.mesh_renderer import MeshRenderer
from freesplatter.utils.camera_util import *
from freesplatter.utils.recon_util import *
from freesplatter.utils.infer_util import *
from freesplatter.webui.camera_viewer.visualizer import CameraVisualizer


def inv_sigmoid(x: torch.Tensor) -> torch.Tensor:
    return torch.log(x / (1.0 - x))


def save_gaussian(latent, gs_vis_path, model, opacity_threshold=None, pad_2dgs_scale=True):
    if latent.ndim == 3:
        latent = latent[0]

    sh_dim = model.sh_dim
    scale_dim = 2 if model.use_2dgs else 3
    xyz, features, opacity, scaling, rotation = latent.split([3, sh_dim, 1, scale_dim, 4], dim=-1)
    features = features.reshape(features.shape[0], sh_dim//3, 3)

    if opacity_threshold is not None:
        index = torch.nonzero(opacity.sigmoid() > opacity_threshold)[:, 0]
        xyz = xyz[index]
        features = features[index]
        opacity = opacity[index]
        scaling = scaling[index]
        rotation = rotation[index]
    
    # transform gaussians from reference view to world view
    cam2world = create_camera_to_world(torch.tensor([0, -2, 0]), camera_system='opencv').to(latent)
    R, T = cam2world[:3, :3], cam2world[:3, 3].reshape(1, 3)
    xyz = xyz @ R.T + T
    rotation = rotation.detach().cpu().numpy()
    rotation = Rotation.from_quat(rotation[:, [1, 2, 3, 0]]).as_matrix()
    rotation = R.detach().cpu().numpy() @ rotation
    rotation = Rotation.from_matrix(rotation).as_quat()[:, [3, 0, 1, 2]]
    rotation = torch.from_numpy(rotation).to(latent)
    
    # pad 2DGS with an additional z-scale for visualization
    if scaling.shape[-1] == 2 and pad_2dgs_scale:
        z_scaling = inv_sigmoid(torch.ones_like(scaling[:, :1]) * 0.001)
        scaling = torch.cat([scaling, z_scaling], dim=-1)
    pc_vis = model.gs_renderer.gaussian_model.set_data(
        xyz.float(), features.float(), scaling.float(), rotation.float(), opacity.float())
    pc_vis.save_ply_vis(gs_vis_path)


class FreeSplatterRunner:
    def __init__(self, device):
        self.device = device

        # background remover
        self.rembg = AutoModelForImageSegmentation.from_pretrained(
            "briaai/RMBG-2.0",
            trust_remote_code=True,
            cache_dir='ckpts/',
        )
        self.rembg.eval()

        # diffusion models
        pipeline = DiffusionPipeline.from_pretrained(
            "sudo-ai/zero123plus-v1.1", 
            custom_pipeline="sudo-ai/zero123plus-pipeline",
            torch_dtype=torch.float16,
            cache_dir="ckpts/",
        )
        pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
            pipeline.scheduler.config, timestep_spacing='trailing'
        )
        self.zero123plus_v11 = pipeline.to(device)

        pipeline = DiffusionPipeline.from_pretrained(
            "sudo-ai/zero123plus-v1.2", 
            custom_pipeline="sudo-ai/zero123plus-pipeline",
            torch_dtype=torch.float16,
            cache_dir="ckpts/",
        )
        pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
            pipeline.scheduler.config, timestep_spacing='trailing'
        )
        self.zero123plus_v12 = pipeline.to(device)

        pipeline = HunYuan3D_MVD_Std_Pipeline.from_pretrained(
            './ckpts/Hunyuan3D-1/mvd_std',
            torch_dtype=torch.float16,
            use_safetensors=True,
        )
        self.hunyuan3d_mvd_std = pipeline.to(device)

        # freesplatter
        config_file = 'configs/freesplatter-object.yaml'
        ckpt_path = hf_hub_download('TencentARC/FreeSplatter', repo_type='model', filename='freesplatter-object.safetensors', local_dir='./ckpts/FreeSplatter')
        model = instantiate_from_config(OmegaConf.load(config_file).model)
        state_dict = {}
        with safe_open(ckpt_path, framework="pt", device="cpu") as f:
            for key in f.keys():
                state_dict[key] = f.get_tensor(key)
        model.load_state_dict(state_dict, strict=True)
        self.freesplatter = model.eval().to(device)

        config_file = 'configs/freesplatter-object-2dgs.yaml'
        ckpt_path = hf_hub_download('TencentARC/FreeSplatter', repo_type='model', filename='freesplatter-object-2dgs.safetensors', local_dir='./ckpts/FreeSplatter')
        model = instantiate_from_config(OmegaConf.load(config_file).model)
        state_dict = {}
        with safe_open(ckpt_path, framework="pt", device="cpu") as f:
            for key in f.keys():
                state_dict[key] = f.get_tensor(key)
        model.load_state_dict(state_dict, strict=True)
        self.freesplatter_2dgs = model.eval().to(device)

        config_file = 'configs/freesplatter-scene.yaml'
        ckpt_path = hf_hub_download('TencentARC/FreeSplatter', repo_type='model', filename='freesplatter-scene.safetensors', local_dir='./ckpts/FreeSplatter')
        model = instantiate_from_config(OmegaConf.load(config_file).model)
        state_dict = {}
        with safe_open(ckpt_path, framework="pt", device="cpu") as f:
            for key in f.keys():
                state_dict[key] = f.get_tensor(key)
        model.load_state_dict(state_dict, strict=True)
        self.freesplatter_scene = model.eval().to(device)

        # mesh optimizer
        self.mesh_renderer = MeshRenderer(
            near=0.01,
            far=100,
            ssaa=1,
            texture_filter='linear-mipmap-linear').to(device)

    @torch.inference_mode()
    def run_segmentation(
        self, 
        image, 
        do_rembg=True,
    ):
        torch.cuda.empty_cache()

        if do_rembg:
            image = remove_background(image, self.rembg)

        return image

    @spaces.GPU
    def run_img_to_3d(
        self, 
        image_rgba, 
        model='Zero123++ v1.2', 
        diffusion_steps=30, 
        guidance_scale=4.0,
        seed=42, 
        view_indices=[],
        gs_type='2DGS',
        mesh_reduction=0.5,
        cache_dir=None,
    ):
        torch.cuda.empty_cache()

        self.output_dir = os.path.join(cache_dir, f'output_{uuid.uuid4()}')
        os.makedirs(self.output_dir, exist_ok=True)

        # image-to-multiview
        input_image = resize_foreground(image_rgba, 0.9)
        seed_everything(seed)
        if model == 'Zero123++ v1.1':
            output_image = self.zero123plus_v11(
                input_image, 
                num_inference_steps=diffusion_steps, 
                guidance_scale=guidance_scale,
            ).images[0]
        elif model == 'Zero123++ v1.2':
            output_image = self.zero123plus_v12(
                input_image, 
                num_inference_steps=diffusion_steps, 
                guidance_scale=guidance_scale,
            ).images[0]
        elif model == 'Hunyuan3D Std':
            output_image = self.hunyuan3d_mvd_std(
                input_image, 
                num_inference_steps=diffusion_steps, 
                guidance_scale=guidance_scale, 
                guidance_curve=lambda t:2.0,
            ).images[0]
        else:
            raise ValueError(f'Unknown model: {model}')
        
        # preprocess images
        image, alpha = rgba_to_white_background(input_image)
        image = v2.functional.resize(image, 512, interpolation=3, antialias=True).clamp(0, 1)
        alpha = v2.functional.resize(alpha, 512, interpolation=0, antialias=True).clamp(0, 1)

        output_image_rgba = remove_background(output_image, self.rembg)
        if 'Zero123++' in model:
            images, alphas = rgba_to_white_background(output_image_rgba)
        else:
            _, alphas = rgba_to_white_background(output_image_rgba)
            images = torch.from_numpy(np.asarray(output_image) / 255.0).float()
            images = rearrange(images, 'h w c -> c h w')

        images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2)
        alphas = rearrange(alphas, 'c (n h) (m w) -> (n m) c h w', n=3, m=2)
        if model == 'Hunyuan3D Std':
            images = images[[0, 2, 4, 5, 3, 1]]
            alphas = alphas[[0, 2, 4, 5, 3, 1]]
        images_vis = v2.functional.to_pil_image(rearrange(images, 'nm c h w -> c h (nm w)'))
        images = v2.functional.resize(images, 512, interpolation=3, antialias=True).clamp(0, 1)
        alphas = v2.functional.resize(alphas, 512, interpolation=0, antialias=True).clamp(0, 1)

        images = torch.cat([image.unsqueeze(0), images], dim=0)     # 7 x 3 x 512 x 512
        alphas = torch.cat([alpha.unsqueeze(0), alphas], dim=0)     # 7 x 1 x 512 x 512

        # run reconstruction
        view_indices = [1, 2, 3, 4, 5, 6] if len(view_indices) == 0 else view_indices
        images, alphas = images[view_indices], alphas[view_indices]
        legends = [f'V{i}' if i != 0 else 'Input' for i in view_indices]

        gs_vis_path, video_path, mesh_fine_path, fig = self.run_freesplatter_object(
            images, alphas, legends=legends, gs_type=gs_type, mesh_reduction=mesh_reduction)

        return images_vis, gs_vis_path, video_path, mesh_fine_path, fig

    @spaces.GPU
    def run_views_to_3d(
        self, 
        image_files, 
        do_rembg=False,
        gs_type='2DGS',
        mesh_reduction=0.5,
        cache_dir=None,
    ):
        torch.cuda.empty_cache()

        self.output_dir = os.path.join(cache_dir, f'output_{uuid.uuid4()}')
        os.makedirs(self.output_dir, exist_ok=True)

        # preprocesss images
        images, alphas = [], []
        for image_file in image_files:
            if isinstance(image_file, tuple):
                image_file = image_file[0]
            image = Image.open(image_file)
            w, h = image.size

            image_rgba = self.run_segmentation(image)
            if image.mode == 'RGBA':
                image, alpha = rgba_to_white_background(image_rgba)
                image = v2.functional.center_crop(image, min(h, w))
                alpha = v2.functional.center_crop(alpha, min(h, w))
            else:
                image_rgba = resize_foreground(image_rgba, 0.9)
                image_rgba.save('test.png')
                image, alpha = rgba_to_white_background(image_rgba)
            
            image = v2.functional.resize(image, 512, interpolation=3, antialias=True).clamp(0, 1)
            alpha = v2.functional.resize(alpha, 512, interpolation=0, antialias=True).clamp(0, 1)

            images.append(image)
            alphas.append(alpha)

        images = torch.stack(images, dim=0)
        alphas = torch.stack(alphas, dim=0)
        images_vis = v2.functional.to_pil_image(rearrange(images, 'n c h w -> c h (n w)'))

        # run reconstruction
        legends = [f'V{i}' for i in range(1, 1+len(images))]

        gs_vis_path, video_path, mesh_fine_path, fig = self.run_freesplatter_object(
            images, alphas, legends=legends, gs_type=gs_type, mesh_reduction=mesh_reduction)

        return images_vis, gs_vis_path, video_path, mesh_fine_path, fig
    
    def run_freesplatter_object(
        self, 
        images, 
        alphas, 
        legends=None, 
        gs_type='2DGS', 
        mesh_reduction=0.5,
    ):
        torch.cuda.empty_cache()
        device = self.device

        freesplatter = self.freesplatter_2dgs if gs_type == '2DGS' else self.freesplatter

        images, alphas = images.to(device), alphas.to(device)
        
        t0 = time.time()
        with torch.inference_mode():
            gaussians = freesplatter.forward_gaussians(images.unsqueeze(0))
        t1 = time.time()

        # estimate camera parameters and visualize
        c2ws_pred, focals_pred = freesplatter.estimate_poses(images, gaussians, masks=alphas, use_first_focal=True, pnp_iter=10)
        fig = self.visualize_cameras_object(images, c2ws_pred, focals_pred, legends=legends)
        t2 = time.time()
        
        # save gaussians
        gs_vis_path = os.path.join(self.output_dir, 'gs_vis.ply')
        save_gaussian(gaussians, gs_vis_path, freesplatter, opacity_threshold=5e-3, pad_2dgs_scale=True)
        print(f'Save gaussian at {gs_vis_path}')

        # render video
        with torch.inference_mode():
            c2ws_video = get_circular_cameras(N=120, elevation=0, radius=2.0, normalize=True).to(device)
            fx = fy = focals_pred.mean() / 512.0
            cx = cy = torch.ones_like(fx) * 0.5
            fxfycxcy_video = torch.tensor([fx, fy, cx, cy]).unsqueeze(0).repeat(c2ws_video.shape[0], 1).to(device)

            video_frames = freesplatter.forward_renderer(
                gaussians,
                c2ws_video.unsqueeze(0),
                fxfycxcy_video.unsqueeze(0),
            )['image'][0].clamp(0, 1)

        video_path = os.path.join(self.output_dir, 'gs.mp4')
        save_video(video_frames, video_path, fps=30)
        print(f'Save video at {video_path}')
        t3 = time.time()

        # extract mesh
        with torch.inference_mode():
            c2ws_fusion = get_fibonacci_cameras(N=120, radius=2.0)
            c2ws_fusion, _ = normalize_cameras(c2ws_fusion, camera_position=torch.tensor([0., -2., 0.]), camera_system='opencv')
            c2ws_fusion = c2ws_fusion.to(device)
            c2ws_fusion_reference = torch.linalg.inv(c2ws_fusion[0:1]) @ c2ws_fusion
            fx = fy = focals_pred.mean() / 512.0
            cx = cy = torch.ones_like(fx) * 0.5
            fov = np.rad2deg(np.arctan(0.5 / fx.item())) * 2
            fxfycxcy_fusion = torch.tensor([fx, fy, cx, cy]).unsqueeze(0).repeat(c2ws_fusion.shape[0], 1).to(device)

            fusion_render_results = freesplatter.forward_renderer(
                gaussians,
                c2ws_fusion_reference.unsqueeze(0),
                fxfycxcy_fusion.unsqueeze(0),
            )
            images_fusion = fusion_render_results['image'][0].clamp(0, 1).permute(0, 2, 3, 1)
            alphas_fusion = fusion_render_results['alpha'][0].permute(0, 2, 3, 1)
            depths_fusion = fusion_render_results['depth'][0].permute(0, 2, 3, 1)

            fusion_images = (images_fusion.detach().cpu().numpy()*255).clip(0, 255).astype(np.uint8)
            fusion_depths = depths_fusion.detach().cpu().numpy()
            fusion_alphas = alphas_fusion.detach().cpu().numpy()
            fusion_masks = (fusion_alphas > 1e-2).astype(np.uint8)
            fusion_depths = fusion_depths * fusion_masks - np.ones_like(fusion_depths) * (1 - fusion_masks)

            fusion_c2ws = c2ws_fusion.detach().cpu().numpy()

            mesh_path = os.path.join(self.output_dir, 'mesh.obj')
            rgbd_to_mesh(
                fusion_images, fusion_depths, fusion_c2ws, fov, mesh_path, cam_elev_thr=-90)    # use all angles for tsdf fusion
            print(f'Save mesh at {mesh_path}')
            t4 = time.time()

        # optimize texture
        cam_pos = c2ws_fusion[:, :3, 3].cpu().numpy()
        cam_inds = torch.from_numpy(fpsample.fps_sampling(cam_pos, 16).astype(int)).to(device=device)

        alphas_bake = alphas_fusion[cam_inds]
        images_bake = (images_fusion[cam_inds] - (1 - alphas_bake)) / alphas_bake.clamp(min=1e-6)

        out_mesh = Mesh.load(str(mesh_path), auto_uv=False, device='cpu')
        max_faces = 50000
        mesh_reduction = max(1 - max_faces / out_mesh.f.shape[0], mesh_reduction)
        mesh_verts_, mesh_faces_ = fast_simplification.simplify(
            out_mesh.v.numpy(), out_mesh.f.numpy(), target_reduction=mesh_reduction)
        mesh_verts = out_mesh.v.new_tensor(mesh_verts_, dtype=torch.float32).requires_grad_(False)
        mesh_faces = out_mesh.f.new_tensor(mesh_faces_).requires_grad_(False)
        out_mesh = Mesh(v=mesh_verts, f=mesh_faces)
        out_mesh.auto_normal()
        out_mesh.auto_uv()
        out_mesh = out_mesh.to(device)

        intrinsics = fxfycxcy_fusion[0:1].clone()
        intrinsics[..., [0, 2]] *= images_bake.shape[-2]
        intrinsics[..., [1, 3]] *= images_bake.shape[-3]

        out_mesh = self.mesh_renderer.bake_multiview(
            [out_mesh], 
            images_bake.unsqueeze(0), 
            alphas_bake.unsqueeze(0), 
            c2ws_fusion[cam_inds].unsqueeze(0), 
            intrinsics.unsqueeze(0),
        )[0]
        mesh_fine_path = os.path.join(self.output_dir, 'mesh.glb')
        # align mesh orientation
        out_mesh.v = out_mesh.v.clone()
        out_mesh.vn = out_mesh.vn.clone()
        out_mesh.v[..., 0] = -out_mesh.v[..., 0]
        out_mesh.vn[..., 0] = -out_mesh.vn[..., 0]
        out_mesh.v[..., [1, 2]] = out_mesh.v[..., [2, 1]]
        out_mesh.vn[..., [1, 2]] = out_mesh.vn[..., [2, 1]]

        out_mesh.write(mesh_fine_path, flip_yz=False)
        print(f"Save optimized mesh at {mesh_fine_path}")
        t5 = time.time()

        print(f'Generate Gaussians: {t1-t0:.2f} seconds.')
        print(f'Estimate poses: {t2-t1:.2f} seconds.')
        print(f'Generate video: {t3-t2:.2f} seconds.')
        print(f'Generate mesh: {t4-t3:.2f} seconds.')
        print(f'Optimize mesh: {t5-t4:.2f} seconds.')

        return gs_vis_path, video_path, mesh_fine_path, fig

    def visualize_cameras_object(
        self, 
        images, 
        c2ws, 
        focal_length, 
        legends=None,
    ):
        images = (images.permute(0, 2, 3, 1).detach().cpu().numpy() * 255).astype(np.uint8)

        cam2world = create_camera_to_world(torch.tensor([0, -2, 0]), camera_system='opencv').to(c2ws)
        transform = cam2world @ torch.linalg.inv(c2ws[0:1])
        c2ws = transform @ c2ws
        c2ws = c2ws.detach().cpu().numpy()
        c2ws[:, :, 1:3] *= -1   # opencv to opengl

        focal_length = focal_length.mean().detach().cpu().numpy()
        fov = np.rad2deg(np.arctan(256.0 / focal_length)) * 2

        colors = [cmap(i / len(images))[:3] for i in range(len(images))]

        legends = [None] * len(images) if legends is None else legends

        viz = CameraVisualizer(c2ws, legends, colors, images=images)
        fig = viz.update_figure(
            3, 
            height=320,
            line_width=5,
            base_radius=1, 
            zoom_scale=1, 
            fov_deg=fov, 
            show_grid=True, 
            show_ticklabels=True, 
            show_background=True, 
            y_up=False,
        )
        return fig
    
    # FreeSplatter-S
    @spaces.GPU
    def run_views_to_scene(
        self, 
        image1,
        image2,
        cache_dir=None,
    ):
        torch.cuda.empty_cache()

        self.output_dir = os.path.join(cache_dir, f'output_{uuid.uuid4()}')
        os.makedirs(self.output_dir, exist_ok=True)

        # preprocesss images
        images = []
        for image in [image1, image2]:
            w, h = image.size
            image = torch.from_numpy(np.asarray(image) / 255.0).float()
            image = rearrange(image, 'h w c -> c h w')
            image = v2.functional.center_crop(image, min(h, w))
            image = v2.functional.resize(image, 512, interpolation=3, antialias=True).clamp(0, 1)
            images.append(image)

        images = torch.stack(images, dim=0)
        images_vis = v2.functional.to_pil_image(rearrange(images, 'n c h w -> c h (n w)'))

        # run reconstruction
        legends = [f'V{i}' for i in range(1, 1+len(images))]

        gs_vis_path, video_path, fig = self.run_freesplatter_scene(images, legends=legends)

        return images_vis, gs_vis_path, video_path, fig
    
    def run_freesplatter_scene(
        self, 
        images, 
        legends=None, 
    ):
        torch.cuda.empty_cache()

        freesplatter = self.freesplatter_scene

        device = self.device
        images = images.to(device)
        
        t0 = time.time()
        with torch.inference_mode():
            gaussians = freesplatter.forward_gaussians(images.unsqueeze(0))
        t1 = time.time()

        # estimate camera parameters
        c2ws_pred, focals_pred = freesplatter.estimate_poses(images, gaussians, use_first_focal=True, pnp_iter=10)
        # rescale cameras to make the baseline equal to 1.0
        baseline_pred = (c2ws_pred[:, :3, 3] - c2ws_pred[:1, :3, 3]).norm() + 1e-2
        scale_factor = 1.0 / baseline_pred
        c2ws_pred = c2ws_pred.clone()
        c2ws_pred[:, :3, 3] *= scale_factor
        # visualize cameras
        fig = self.visualize_cameras_scene(images, c2ws_pred, focals_pred, legends=legends)
        t2 = time.time()
        
        # save gaussians
        gs_vis_path = os.path.join(self.output_dir, 'gs_vis.ply')
        save_gaussian(gaussians, gs_vis_path, freesplatter, opacity_threshold=5e-3)
        print(f'Save gaussian at {gs_vis_path}')

        # render video
        with torch.inference_mode():
            c2ws_video = generate_interpolated_path(c2ws_pred.detach().cpu().numpy()[:, :3, :], n_interp=120)
            c2ws_video = torch.cat([
                torch.from_numpy(c2ws_video), 
                torch.tensor([0, 0, 0, 1]).reshape(1, 1, 4).repeat(c2ws_video.shape[0], 1, 1)
            ], dim=1).to(gaussians)
            fx = fy = focals_pred.mean() / 512.0
            cx = cy = torch.ones_like(fx) * 0.5
            fxfycxcy_video = torch.tensor([fx, fy, cx, cy]).unsqueeze(0).repeat(c2ws_video.shape[0], 1).to(device)

            video_frames = freesplatter.forward_renderer(
                gaussians,
                c2ws_video.unsqueeze(0),
                fxfycxcy_video.unsqueeze(0),
                rescale=scale_factor.reshape(1).to(gaussians)
            )['image'][0].clamp(0, 1)

        video_path = os.path.join(self.output_dir, 'gs.mp4')
        save_video(video_frames, video_path, fps=30)
        print(f'Save video at {video_path}')
        t3 = time.time()

        print(f'Generate Gaussians: {t1-t0:.2f} seconds.')
        print(f'Estimate poses: {t2-t1:.2f} seconds.')
        print(f'Generate video: {t3-t2:.2f} seconds.')

        return gs_vis_path, video_path, fig

    def visualize_cameras_scene(
        self, 
        images, 
        c2ws, 
        focal_length, 
        legends=None,
    ):
        images = (images.permute(0, 2, 3, 1).detach().cpu().numpy() * 255).astype(np.uint8)

        c2ws = c2ws.detach().cpu().numpy()
        c2ws[:, :, 1:3] *= -1

        focal_length = focal_length.mean().detach().cpu().numpy()
        fov = np.rad2deg(np.arctan(256.0 / focal_length)) * 2

        colors = [cmap(i / len(images))[:3] for i in range(len(images))]

        legends = [None] * len(images) if legends is None else legends

        viz = CameraVisualizer(c2ws, legends, colors, images=images)
        fig = viz.update_figure(
            2, 
            height=320,
            line_width=5,
            base_radius=1, 
            zoom_scale=1, 
            fov_deg=fov, 
            show_grid=True, 
            show_ticklabels=True, 
            show_background=True, 
            y_up=False,
        )
        return fig