Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,740 Bytes
184193d d9755c0 184193d a1e1b30 184193d a1e1b30 184193d 6f6e3f8 184193d 5a9c38f 184193d 358a369 184193d 0308560 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import os
if 'OMP_NUM_THREADS' not in os.environ:
os.environ['OMP_NUM_THREADS'] = '16'
import torch
import subprocess
import gradio as gr
from functools import partial
from huggingface_hub import snapshot_download
from freesplatter.webui.runner import FreeSplatterRunner
from freesplatter.webui.tab_img_to_3d import create_interface_img_to_3d
def install_cuda_toolkit():
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
install_cuda_toolkit()
torch.set_grad_enabled(False)
device = torch.device('cuda')
runner = FreeSplatterRunner(device)
_HEADER_ = '''
# FreeSplatter π€ Gradio Demo
\n\nOfficial demo of the paper [FreeSplatter: Pose-free Gaussian Splatting for Sparse-view 3D Reconstruction](https://arxiv.org/abs/2404.07191). [[Github]](https://github.com/TencentARC/FreeSplatter)
**FreeSplatter** is a feed-forward framework capable of generating high-quality 3D Gaussians from **uncalibrated** sparse-view images and recovering their camera parameters in mere seconds.
'''
_IMG_TO_3D_HELP_ = '''
π‘π‘π‘**Usage Tips:**
- This demo supports various multi-view diffusion models, including [Hunyuan3D](https://github.com/Tencent/Hunyuan3D-1) Std and [Zero123++](https://github.com/SUDO-AI-3D/zero123plus) v1.1/v1.2. You can try different models to get the best result.
- Try clicking the \U0001f3b2\ufe0f button to use a different `Random seed` (default: 42) for diverse outputs.
- In most cases, using `2DGS` leads to better mesh geometry than `3DGS`. Please refer to the [2DGS paper](https://arxiv.org/abs/2403.17888).
- You can adjust the views used for reconstruction to alleviate the blurry texture problem caused by multi-view inconsistency.
βοΈβοΈβοΈ**NOTE:**
We are dealing with some bugs related to the ZeroGPU environment, stay tuned!
'''
_CITE_ = r"""
If FreeSplatter is helpful, please help to β the <a href='https://github.com/TencentARC/FreeSplatter' target='_blank'>Github Repo</a>. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/TencentARC/FreeSplatter?style=social)](https://github.com/TencentARC/FreeSplatter)
---
π **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{xu2024freesplatter,
title={FreeSplatter: Pose-free Gaussian Splatting for Sparse-view 3D Reconstruction},
author={Xu, Jiale and Gao, Shenghua and Shan, Ying},
journal={arXiv preprint},
year={2024}
}
```
π **License**
Apache-2.0 LICENSE. Please refer to the [LICENSE file](https://huggingface.co/spaces/TencentARC/FreeSplatter/blob/main/LICENSE) for details.
π§ **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>[email protected]</b>.
"""
with gr.Blocks(analytics_enabled=False, title='FreeSplatter Demo') as demo:
gr.Markdown(_HEADER_)
with gr.Tabs() as main_tabs:
with gr.TabItem('Image-to-3D', id='tab_img_to_3d'):
gr.Markdown(_IMG_TO_3D_HELP_)
with gr.Tabs() as sub_tabs_img_to_3d:
with gr.TabItem('Hunyuan3D Std', id='tab_hunyuan3d_std'):
_, var_img_to_3d_hunyuan3d_std = create_interface_img_to_3d(
runner.run_segmentation,
runner.run_img_to_3d,
model='Hunyuan3D Std')
with gr.TabItem('Zero123++ v1.1', id='tab_zero123plus_v11'):
_, var_img_to_3d_zero123plus_v11 = create_interface_img_to_3d(
runner.run_segmentation,
runner.run_img_to_3d,
model='Zero123++ v1.1')
with gr.TabItem('Zero123++ v1.2', id='tab_zero123plus_v12'):
_, var_img_to_3d_zero123plus_v12 = create_interface_img_to_3d(
runner.run_segmentation,
runner.run_img_to_3d,
model='Zero123++ v1.2')
gr.Markdown(_CITE_)
demo.launch()
|