File size: 23,522 Bytes
184193d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
# Open Source Model Licensed under the Apache License Version 2.0 and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.

# Copyright (C) 2024 THL A29 Limited, a Tencent company.  All rights reserved. 
# The below software and/or models in this distribution may have been 
# modified by THL A29 Limited ("Tencent Modifications"). 
# All Tencent Modifications are Copyright (C) THL A29 Limited.

# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT 
# except for the third-party components listed below. 
# Hunyuan 3D does not impose any additional limitations beyond what is outlined 
# in the repsective licenses of these third-party components. 
# Users must comply with all terms and conditions of original licenses of these third-party 
# components and must ensure that the usage of the third party components adheres to 
# all relevant laws and regulations. 

# For avoidance of doubts, Hunyuan 3D means the large language models and 
# their software and algorithms, including trained model weights, parameters (including 
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code, 
# fine-tuning enabling code and other elements of the foregoing made publicly available 
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.

import math
import numpy
import torch
import inspect
import warnings
from PIL import Image
from einops import rearrange
import torch.nn.functional as F
from diffusers.utils.torch_utils import randn_tensor
from diffusers.configuration_utils import FrozenDict
from diffusers.image_processor import VaeImageProcessor
from typing import Any, Callable, Dict, List, Optional, Union
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers import DDPMScheduler, EulerAncestralDiscreteScheduler, ImagePipelineOutput
from diffusers.loaders import (
    FromSingleFileMixin, 
    LoraLoaderMixin, 
    TextualInversionLoaderMixin
)
from transformers import (
    CLIPImageProcessor, 
    CLIPTextModel, 
    CLIPTokenizer, 
    CLIPVisionModelWithProjection
)
from diffusers.models.attention_processor import (
    Attention, 
    AttnProcessor, 
    XFormersAttnProcessor, 
    AttnProcessor2_0
)

from .utils import to_rgb_image, white_out_background, recenter_img


EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from here import Hunyuan3d_MVD_Qing_Pipeline

        >>> pipe = Hunyuan3d_MVD_Qing_Pipeline.from_pretrained(
        ...     "Tencent-Hunyuan-3D/MVD-Qing", torch_dtype=torch.float16
        ... )
        >>> pipe.to("cuda")

        >>> img = Image.open("demo.png")
        >>> res_img = pipe(img).images[0]
"""

def unscale_latents(latents): return latents / 0.75 + 0.22
def unscale_image  (image  ): return   image / 0.50 * 0.80


def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg



class ReferenceOnlyAttnProc(torch.nn.Module):
    # reference attention
    def __init__(self, chained_proc, enabled=False, name=None):
        super().__init__()
        self.enabled = enabled
        self.chained_proc = chained_proc
        self.name = name

    def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, mode="w", ref_dict=None):
        if encoder_hidden_states is None: encoder_hidden_states = hidden_states
        if self.enabled:
            if mode == 'w': 
                ref_dict[self.name] = encoder_hidden_states
            elif mode == 'r': 
                encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict.pop(self.name)], dim=1)
        res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask)
        return res


# class RowWiseAttnProcessor2_0:
#     def __call__(self, attn, 
#                  hidden_states, 
#                  encoder_hidden_states=None, 
#                  attention_mask=None, 
#                  temb=None, 
#                  num_views=6, 
#                  *args, 
#                  **kwargs):
#         residual = hidden_states
#         if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb)

#         input_ndim = hidden_states.ndim
#         if input_ndim == 4:
#             batch_size, channel, height, width = hidden_states.shape
#             hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

#         if encoder_hidden_states is None:
#             batch_size, sequence_length, _ = hidden_states.shape
#         else:
#             batch_size, sequence_length, _ = encoder_hidden_states.shape
        
#         if attention_mask is not None:
#             attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
#             attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
#         if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

#         query = attn.to_q(hidden_states)
#         if encoder_hidden_states is None: encoder_hidden_states = hidden_states
#         elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

#         # encoder_hidden_states [B, 6hw+hw, C] if ref att
#         key = attn.to_k(encoder_hidden_states) # [B, Vhw+hw, C]
#         value = attn.to_v(encoder_hidden_states) # [B, Vhw+hw, C]

#         mv_flag = hidden_states.shape[1] < encoder_hidden_states.shape[1] and encoder_hidden_states.shape[1] != 77
#         if mv_flag:
#             target_size = int(math.sqrt(hidden_states.shape[1] // num_views))
#             assert target_size ** 2 * num_views == hidden_states.shape[1]

#             gen_key = key[:, :num_views*target_size*target_size, :]
#             ref_key = key[:, num_views*target_size*target_size:, :]
#             gen_value = value[:, :num_views*target_size*target_size, :]
#             ref_value = value[:, num_views*target_size*target_size:, :]

#             # rowwise attention
#             query, gen_key, gen_value = \
#                     rearrange(    query, "b (v1 h v2 w) c -> (b h) (v1 v2 w) c", 
#                               v1=num_views//2, v2=2, h=target_size, w=target_size), \
#                     rearrange(  gen_key, "b (v1 h v2 w) c -> (b h) (v1 v2 w) c", 
#                               v1=num_views//2, v2=2, h=target_size, w=target_size), \
#                     rearrange(gen_value, "b (v1 h v2 w) c -> (b h) (v1 v2 w) c", 
#                               v1=num_views//2, v2=2, h=target_size, w=target_size)

#             inner_dim = key.shape[-1]
#             ref_size = int(math.sqrt(ref_key.shape[1]))
#             ref_key_expanded = ref_key.view(batch_size, 1, ref_size * ref_size, inner_dim)
#             ref_key_expanded = ref_key_expanded.expand(-1, target_size, -1, -1).contiguous()
#             ref_key_expanded = ref_key_expanded.view(batch_size * target_size, ref_size * ref_size, inner_dim)
#             key   = torch.cat([  gen_key,   ref_key_expanded], dim=1)
            
#             ref_value_expanded = ref_value.view(batch_size, 1, ref_size * ref_size, inner_dim)
#             ref_value_expanded = ref_value_expanded.expand(-1, target_size, -1, -1).contiguous()
#             ref_value_expanded = ref_value_expanded.view(batch_size * target_size, ref_size * ref_size, inner_dim)
#             value = torch.cat([gen_value, ref_value_expanded], dim=1)
#             h = target_size
#         else:
#             target_size = int(math.sqrt(hidden_states.shape[1]))
#             h = 1
#             num_views = 1

#         inner_dim = key.shape[-1]
#         head_dim = inner_dim // attn.heads

#         query = query.view(batch_size * h, -1, attn.heads, head_dim).transpose(1, 2)
#         key   =   key.view(batch_size * h, -1, attn.heads, head_dim).transpose(1, 2)
#         value = value.view(batch_size * h, -1, attn.heads, head_dim).transpose(1, 2)

#         hidden_states = F.scaled_dot_product_attention(query, key, value, 
#                                                        attn_mask=attention_mask, 
#                                                        dropout_p=0.0, 
#                                                        is_causal=False)
#         hidden_states = hidden_states.transpose(1, 2).reshape(batch_size * h, 
#                                                               -1, 
#                                                               attn.heads * head_dim).to(query.dtype)
#         hidden_states = attn.to_out[1](attn.to_out[0](hidden_states))

#         if mv_flag: hidden_states = rearrange(hidden_states, "(b h) (v1 v2 w) c -> b (v1 h v2 w) c", 
#                                               b=batch_size, v1=num_views//2,
#                                               v2=2, h=target_size, w=target_size)

#         if input_ndim == 4: 
#             hidden_states = hidden_states.transpose(-1, -2)
#             hidden_states = hidden_states.reshape(batch_size, 
#                                                   channel, 
#                                                   target_size, 
#                                                   target_size)
#         if attn.residual_connection: hidden_states = hidden_states + residual
#         hidden_states = hidden_states / attn.rescale_output_factor
#         return hidden_states


class RefOnlyNoisedUNet(torch.nn.Module):
    def __init__(self, unet, train_sched, val_sched):
        super().__init__()
        self.unet = unet
        self.train_sched = train_sched
        self.val_sched = val_sched

        unet_lora_attn_procs = dict()
        for name, _ in unet.attn_processors.items():
            unet_lora_attn_procs[name] = ReferenceOnlyAttnProc(AttnProcessor2_0(), 
                                                           enabled=name.endswith("attn1.processor"), 
                                                           name=name)
        unet.set_attn_processor(unet_lora_attn_procs)

    def __getattr__(self, name: str):
        try:
            return super().__getattr__(name)
        except AttributeError:
            return getattr(self.unet, name)

    def forward(self, sample, timestep, encoder_hidden_states, *args, cross_attention_kwargs, **kwargs):
        cond_lat = cross_attention_kwargs['cond_lat']
        noise = torch.randn_like(cond_lat)
        if self.training:
            noisy_cond_lat = self.train_sched.add_noise(cond_lat, noise, timestep)
            noisy_cond_lat = self.train_sched.scale_model_input(noisy_cond_lat, timestep)
        else:
            noisy_cond_lat = self.val_sched.add_noise(cond_lat, noise, timestep.reshape(-1))
            noisy_cond_lat = self.val_sched.scale_model_input(noisy_cond_lat, timestep.reshape(-1))

        ref_dict = {}
        self.unet(noisy_cond_lat, 
                  timestep, 
                  encoder_hidden_states, 
                  *args, 
                  cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict), 
                  **kwargs)
        return  self.unet(sample, 
                          timestep, 
                          encoder_hidden_states, 
                          *args, 
                          cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict), 
                          **kwargs)


class Hunyuan3d_MVD_Lite_Pipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin):
    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        vision_encoder: CLIPVisionModelWithProjection,
        feature_extractor_clip: CLIPImageProcessor, 
        feature_extractor_vae: CLIPImageProcessor,
        ramping_coefficients: Optional[list] = None,
        safety_checker=None,
    ):
        DiffusionPipeline.__init__(self)
        self.register_modules(
            vae=vae,
            unet=unet,
            tokenizer=tokenizer,
            scheduler=scheduler,
            text_encoder=text_encoder,
            vision_encoder=vision_encoder,
            feature_extractor_vae=feature_extractor_vae,
            feature_extractor_clip=feature_extractor_clip)
        '''
            rewrite the stable diffusion pipeline
            vae: vae
            unet: unet
            tokenizer: tokenizer
            scheduler: scheduler
            text_encoder: text_encoder
            vision_encoder: vision_encoder
            feature_extractor_vae: feature_extractor_vae
            feature_extractor_clip: feature_extractor_clip
        '''
        self.register_to_config(ramping_coefficients=ramping_coefficients)
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)

    def prepare_extra_step_kwargs(self, generator, eta):
        extra_step_kwargs = {}
        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_eta: extra_step_kwargs["eta"] = eta

        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator: extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    @torch.no_grad()
    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        lora_scale: Optional[float] = None,
    ):
        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
            self._lora_scale = lora_scale

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = text_inputs.attention_mask.to(device)
            else:
                attention_mask = None

            prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)[0]

        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
        bs_embed, seq_len, _ = prompt_embeds.shape
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None: uncond_tokens = [""] * batch_size
            elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError()
            elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt): raise ValueError()
            else: uncond_tokens = negative_prompt
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(uncond_tokens, 
                                          padding="max_length", 
                                          max_length=max_length, 
                                          truncation=True, 
                                          return_tensors="pt")

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask)
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            seq_len = negative_prompt_embeds.shape[1]
            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

        return prompt_embeds

    @torch.no_grad()
    def encode_condition_image(self, image: torch.Tensor): return self.vae.encode(image).latent_dist.sample()

    @torch.no_grad()
    def __call__(self, image=None, 
                 width=640, 
                 height=960, 
                 num_inference_steps=75, 
                 return_dict=True, 
                 generator=None, 
                 **kwargs):
        batch_size = 1
        num_images_per_prompt = 1
        output_type = 'pil'
        do_classifier_free_guidance = True
        guidance_rescale = 0.
        if isinstance(self.unet, UNet2DConditionModel): 
            self.unet = RefOnlyNoisedUNet(self.unet, None, self.scheduler).eval()

        cond_image = recenter_img(image)
        cond_image = to_rgb_image(image)
        image = cond_image
        image_1 = self.feature_extractor_vae(images=image, return_tensors="pt").pixel_values
        image_2 = self.feature_extractor_clip(images=image, return_tensors="pt").pixel_values
        image_1 = image_1.to(device=self.vae.device, dtype=self.vae.dtype)
        image_2 = image_2.to(device=self.vae.device, dtype=self.vae.dtype)

        cond_lat = self.encode_condition_image(image_1)
        negative_lat = self.encode_condition_image(torch.zeros_like(image_1))
        cond_lat = torch.cat([negative_lat, cond_lat])
        cross_attention_kwargs = dict(cond_lat=cond_lat)

        global_embeds = self.vision_encoder(image_2, output_hidden_states=False).image_embeds.unsqueeze(-2)
        encoder_hidden_states = self._encode_prompt('', self.device, num_images_per_prompt, False)
        ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1)
        prompt_embeds = torch.cat([encoder_hidden_states, encoder_hidden_states + global_embeds * ramp])

        device = self._execution_device
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(batch_size * num_images_per_prompt,
                                       num_channels_latents, 
                                       height, 
                                       width, 
                                       prompt_embeds.dtype, 
                                       device, 
                                       generator, 
                                       None)
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, 0.0)
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order

        # set adaptive cfg
        # the image order is:
        #    [0, 60, 
        #     120, 180,
        #     240, 300]
        # the cfg is set as 3, 2.5, 2, 1.5
        
        tmp_guidance_scale = torch.ones_like(latents)
        tmp_guidance_scale[:, :, :40, :40] = 3
        tmp_guidance_scale[:, :, :40, 40:] =  2.5
        tmp_guidance_scale[:, :, 40:80, :40] =  2
        tmp_guidance_scale[:, :, 40:80, 40:] =  1.5
        tmp_guidance_scale[:, :, 80:120, :40] =  2
        tmp_guidance_scale[:, :, 80:120, 40:] =  2.5

        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                noise_pred = self.unet(latent_model_input, t,
                                encoder_hidden_states=prompt_embeds, 
                                cross_attention_kwargs=cross_attention_kwargs, 
                                return_dict=False)[0]

                adaptive_guidance_scale = (2 + 16 * (t / 1000) ** 5) / 3
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + \
                        tmp_guidance_scale * adaptive_guidance_scale * \
                        (noise_pred_text - noise_pred_uncond)

                if do_classifier_free_guidance and guidance_rescale > 0.0:
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)

                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
                if i==len(timesteps)-1 or ((i+1)>num_warmup_steps and (i+1)%self.scheduler.order==0): 
                    progress_bar.update()

        latents = unscale_latents(latents)
        image = unscale_image(self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0])
        image = self.image_processor.postprocess(image, output_type='pil')[0]
        image = [image, cond_image]
        return ImagePipelineOutput(images=image) if return_dict else (image,)