Spaces:
Running
on
Zero
Running
on
Zero
import random | |
import gradio as gr | |
from functools import partial | |
from .gradio_custommodel3d import CustomModel3D | |
from .gradio_customgs import CustomGS | |
def create_interface_img_to_3d(segmentation_api, freesplatter_api, model='Zero123++ v1.2'): | |
default_views = { | |
'Zero123++ v1.1': ['Input', 'V2', 'V3', 'V5'], | |
'Zero123++ v1.2': ['V1', 'V2', 'V3', 'V5', 'V6'], | |
'Hunyuan3D Std': ['V1', 'V2', 'V4', 'V6'] | |
} | |
views_info = { | |
'Zero123++ v1.1': 'View poses (azimuth, elevation): V1(30, 30), V2(90, -20), V3(150, 30), V4(-150, -20), V5(-90, 30), V6(-30, -20)', | |
'Zero123++ v1.2': 'View poses (azimuth, elevation): V1(30, 20), V2(90, -10), V3(150, 20), V4(-150, -10), V5(-90, 20), V6(-30, -10)', | |
'Hunyuan3D Std': 'View poses (azimuth, elevation): V1(0, 0), V2(60, 0), V3(120, 0), V4(180, 0), V5(-120, 0), V6(-60, 0)', | |
} | |
var_dict = dict() | |
with gr.Blocks(analytics_enabled=False) as interface: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Row(): | |
var_dict['in_image'] = gr.Image( | |
label='Input image', | |
type='pil', | |
image_mode='RGBA', | |
) | |
var_dict['fg_image'] = gr.Image( | |
label='Segmented foreground', | |
type='pil', | |
interactive=False, | |
image_mode='RGBA', | |
) | |
with gr.Accordion("Diffusion settings", open=True): | |
with gr.Row(): | |
var_dict['do_rembg'] = gr.Checkbox( | |
label='Remove background', | |
value=True, | |
container=False, | |
) | |
with gr.Row(): | |
with gr.Column(): | |
var_dict['seed'] = gr.Number( | |
label='Random seed', | |
value=42, | |
min_width=100, | |
precision=0, | |
minimum=0, | |
maximum=2 ** 31, | |
elem_classes=['force-hide-container'], | |
) | |
var_dict['random_seed'] = gr.Button( | |
'\U0001f3b2\ufe0f Try your luck!', | |
elem_classes=['tool'], | |
) | |
with gr.Column(): | |
var_dict['diffusion_steps'] = gr.Slider( | |
label="Sampling steps", | |
minimum=15, | |
maximum=75, | |
value=30, | |
step=5, | |
) | |
var_dict['guidance_scale'] = gr.Slider( | |
label="Guidance scale", | |
minimum=1, | |
maximum=10, | |
value=4, | |
step=1, | |
) | |
with gr.Accordion("Reconstruction settings", open=True): | |
with gr.Row(): | |
var_dict['view_indices'] = gr.CheckboxGroup( | |
choices=['Input', 'V1', 'V2', 'V3', 'V4', 'V5', 'V6'], | |
value=default_views[model], | |
type='index', | |
label='Views used for reconstruction', | |
info='Using input image is only recommended for Zero123++ v1.1', | |
) | |
with gr.Row(): | |
var_dict['gs_type'] = gr.Radio( | |
choices=['2DGS', '3DGS'], | |
value='2DGS', | |
type='value', | |
label='Gaussian splatting type', | |
info='2DGS often leads to better mesh geometry' | |
) | |
var_dict['mesh_reduction'] = gr.Slider( | |
label="Mesh simplification ratio", | |
info='Larger ratio leads to less faces', | |
minimum=0.7, | |
maximum=0.95, | |
value=0.8, | |
step=0.05, | |
) | |
with gr.Row(equal_height=False): | |
var_dict['run_btn'] = gr.Button('Generate', variant='primary', scale=2) | |
with gr.Row(visible=False): | |
var_dict['model'] = gr.Textbox(value=model, label='Model') | |
gr.Examples( | |
examples='examples/img_to_3d', | |
inputs=var_dict['in_image'], | |
cache_examples=False, | |
label='Examples (click one of the images below to start)', | |
examples_per_page=21, | |
) | |
with gr.Column(scale=1): | |
var_dict['out_multiview'] = gr.Image( | |
label='Generated views', | |
interactive=False, | |
image_mode='RGBA', | |
) | |
var_dict['out_pose'] = gr.Plot( | |
label='Estimated poses', | |
) | |
var_dict['out_gs_vis'] = CustomGS( | |
label='Output GS', | |
interactive=False, | |
height=320, | |
) | |
var_dict['out_video'] = gr.Video( | |
label='Output video', | |
interactive=False, | |
autoplay=True, | |
height=320, | |
) | |
var_dict['out_mesh'] = CustomModel3D( | |
label='Output mesh', | |
interactive=False, | |
height=400, | |
) | |
var_dict['run_btn'].click( | |
fn=segmentation_api, | |
inputs=var_dict['in_image'], | |
outputs=var_dict['fg_image'], | |
concurrency_id='default_group', | |
api_name='run_segmentation', | |
).success( | |
fn=partial(freesplatter_api, cache_dir=interface.GRADIO_CACHE), | |
inputs=[var_dict['fg_image'], | |
var_dict['model'], | |
var_dict['diffusion_steps'], | |
var_dict['guidance_scale'], | |
var_dict['seed'], | |
var_dict['view_indices'], | |
var_dict['gs_type'], | |
var_dict['mesh_reduction']], | |
outputs=[var_dict['out_multiview'], var_dict['out_gs_vis'], var_dict['out_video'], var_dict['out_mesh'], var_dict['out_pose']], | |
concurrency_id='default_group', | |
api_name='run_image_to_3d', | |
) | |
var_dict['random_seed'].click( | |
fn=lambda: random.randint(0, 2 ** 31), | |
outputs=var_dict['seed'], | |
show_progress=False, | |
api_name=False, | |
) | |
return interface, var_dict | |