import random import gradio as gr from functools import partial from .gradio_custommodel3d import CustomModel3D from .gradio_customgs import CustomGS def create_interface_img_to_3d(segmentation_api, freesplatter_api, model='Zero123++ v1.2'): default_views = { 'Zero123++ v1.1': ['Input', 'V2', 'V3', 'V5'], 'Zero123++ v1.2': ['V1', 'V2', 'V3', 'V5', 'V6'], 'Hunyuan3D Std': ['V1', 'V2', 'V4', 'V6'] } views_info = { 'Zero123++ v1.1': 'View poses (azimuth, elevation): V1(30, 30), V2(90, -20), V3(150, 30), V4(-150, -20), V5(-90, 30), V6(-30, -20)', 'Zero123++ v1.2': 'View poses (azimuth, elevation): V1(30, 20), V2(90, -10), V3(150, 20), V4(-150, -10), V5(-90, 20), V6(-30, -10)', 'Hunyuan3D Std': 'View poses (azimuth, elevation): V1(0, 0), V2(60, 0), V3(120, 0), V4(180, 0), V5(-120, 0), V6(-60, 0)', } var_dict = dict() with gr.Blocks(analytics_enabled=False) as interface: with gr.Row(): with gr.Column(scale=1): with gr.Row(): var_dict['in_image'] = gr.Image( label='Input image', type='pil', image_mode='RGBA', ) var_dict['fg_image'] = gr.Image( label='Segmented foreground', type='pil', interactive=False, image_mode='RGBA', ) with gr.Accordion("Diffusion settings", open=True): with gr.Row(): var_dict['do_rembg'] = gr.Checkbox( label='Remove background', value=True, container=False, ) with gr.Row(): with gr.Column(): var_dict['seed'] = gr.Number( label='Random seed', value=42, min_width=100, precision=0, minimum=0, maximum=2 ** 31, elem_classes=['force-hide-container'], ) var_dict['random_seed'] = gr.Button( '\U0001f3b2\ufe0f Try your luck!', elem_classes=['tool'], ) with gr.Column(): var_dict['diffusion_steps'] = gr.Slider( label="Sampling steps", minimum=15, maximum=75, value=30, step=5, ) var_dict['guidance_scale'] = gr.Slider( label="Guidance scale", minimum=1, maximum=10, value=4, step=1, ) with gr.Accordion("Reconstruction settings", open=True): with gr.Row(): var_dict['view_indices'] = gr.CheckboxGroup( choices=['Input', 'V1', 'V2', 'V3', 'V4', 'V5', 'V6'], value=default_views[model], type='index', label='Views used for reconstruction', info='Using input image is only recommended for Zero123++ v1.1', ) with gr.Row(): var_dict['gs_type'] = gr.Radio( choices=['2DGS', '3DGS'], value='2DGS', type='value', label='Gaussian splatting type', info='2DGS often leads to better mesh geometry' ) var_dict['mesh_reduction'] = gr.Slider( label="Mesh simplification ratio", info='Larger ratio leads to less faces', minimum=0.7, maximum=0.95, value=0.8, step=0.05, ) with gr.Row(equal_height=False): var_dict['run_btn'] = gr.Button('Generate', variant='primary', scale=2) with gr.Row(visible=False): var_dict['model'] = gr.Textbox(value=model, label='Model') gr.Examples( examples='examples/img_to_3d', inputs=var_dict['in_image'], cache_examples=False, label='Examples (click one of the images below to start)', examples_per_page=21, ) with gr.Column(scale=1): var_dict['out_multiview'] = gr.Image( label='Generated views', interactive=False, image_mode='RGBA', ) var_dict['out_pose'] = gr.Plot( label='Estimated poses', ) var_dict['out_gs_vis'] = CustomGS( label='Output GS', interactive=False, height=320, ) var_dict['out_video'] = gr.Video( label='Output video', interactive=False, autoplay=True, height=320, ) var_dict['out_mesh'] = CustomModel3D( label='Output mesh', interactive=False, height=400, ) var_dict['run_btn'].click( fn=segmentation_api, inputs=var_dict['in_image'], outputs=var_dict['fg_image'], concurrency_id='default_group', api_name='run_segmentation', ).success( fn=partial(freesplatter_api, cache_dir=interface.GRADIO_CACHE), inputs=[var_dict['fg_image'], var_dict['model'], var_dict['diffusion_steps'], var_dict['guidance_scale'], var_dict['seed'], var_dict['view_indices'], var_dict['gs_type'], var_dict['mesh_reduction']], outputs=[var_dict['out_multiview'], var_dict['out_gs_vis'], var_dict['out_video'], var_dict['out_mesh'], var_dict['out_pose']], concurrency_id='default_group', api_name='run_image_to_3d', ) var_dict['random_seed'].click( fn=lambda: random.randint(0, 2 ** 31), outputs=var_dict['seed'], show_progress=False, api_name=False, ) return interface, var_dict