Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,147 Bytes
ca2145e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
from typing import Callable, Dict, List, Optional, Union
import gc
import numpy as np
import torch
import torch.nn.functional as F
from diffusers.pipelines.stable_video_diffusion.pipeline_stable_video_diffusion import (
_resize_with_antialiasing,
StableVideoDiffusionPipeline,
retrieve_timesteps,
)
from diffusers.utils import logging
from kornia.utils import create_meshgrid
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@torch.no_grad()
def normalize_point_map(point_map, valid_mask):
# T,H,W,3 T,H,W
norm_factor = (point_map[..., 2] * valid_mask.float()).mean() / (valid_mask.float().mean() + 1e-8)
norm_factor = norm_factor.clip(min=1e-3)
return point_map / norm_factor
def point_map_xy2intrinsic_map(point_map_xy):
# *,h,w,2
height, width = point_map_xy.shape[-3], point_map_xy.shape[-2]
assert height % 2 == 0
assert width % 2 == 0
mesh_grid = create_meshgrid(
height=height,
width=width,
normalized_coordinates=True,
device=point_map_xy.device,
dtype=point_map_xy.dtype
)[0] # h,w,2
assert mesh_grid.abs().min() > 1e-4
# *,h,w,2
mesh_grid = mesh_grid.expand_as(point_map_xy)
nc = point_map_xy.mean(dim=-2).mean(dim=-2) # *, 2
nc_map = nc[..., None, None, :].expand_as(point_map_xy)
nf = ((point_map_xy - nc_map) / mesh_grid).mean(dim=-2).mean(dim=-2)
nf_map = nf[..., None, None, :].expand_as(point_map_xy)
# print((mesh_grid * nf_map + nc_map - point_map_xy).abs().max())
return torch.cat([nc_map, nf_map], dim=-1)
def robust_min_max(tensor, quantile=0.99):
T, H, W = tensor.shape
min_vals = []
max_vals = []
for i in range(T):
min_vals.append(torch.quantile(tensor[i], q=1-quantile, interpolation='nearest').item())
max_vals.append(torch.quantile(tensor[i], q=quantile, interpolation='nearest').item())
return min(min_vals), max(max_vals)
class GeometryCrafterDiffPipeline(StableVideoDiffusionPipeline):
@torch.inference_mode()
def encode_video(
self,
video: torch.Tensor,
chunk_size: int = 14,
) -> torch.Tensor:
"""
:param video: [b, c, h, w] in range [-1, 1], the b may contain multiple videos or frames
:param chunk_size: the chunk size to encode video
:return: image_embeddings in shape of [b, 1024]
"""
video_224 = _resize_with_antialiasing(video.float(), (224, 224))
video_224 = (video_224 + 1.0) / 2.0 # [-1, 1] -> [0, 1]
embeddings = []
for i in range(0, video_224.shape[0], chunk_size):
emb = self.feature_extractor(
images=video_224[i : i + chunk_size],
do_normalize=True,
do_center_crop=False,
do_resize=False,
do_rescale=False,
return_tensors="pt",
).pixel_values.to(video.device, dtype=video.dtype)
embeddings.append(self.image_encoder(emb).image_embeds) # [b, 1024]
embeddings = torch.cat(embeddings, dim=0) # [t, 1024]
return embeddings
@torch.inference_mode()
def encode_vae_video(
self,
video: torch.Tensor,
chunk_size: int = 14,
):
"""
:param video: [b, c, h, w] in range [-1, 1], the b may contain multiple videos or frames
:param chunk_size: the chunk size to encode video
:return: vae latents in shape of [b, c, h, w]
"""
video_latents = []
for i in range(0, video.shape[0], chunk_size):
video_latents.append(
self.vae.encode(video[i : i + chunk_size]).latent_dist.mode()
)
video_latents = torch.cat(video_latents, dim=0)
return video_latents
@torch.inference_mode()
def produce_priors(self, prior_model, frame, chunk_size=8):
T, _, H, W = frame.shape
frame = (frame + 1) / 2
pred_point_maps = []
pred_masks = []
for i in range(0, len(frame), chunk_size):
pred_p, pred_m = prior_model.forward_image(frame[i:i+chunk_size])
pred_point_maps.append(pred_p)
pred_masks.append(pred_m)
pred_point_maps = torch.cat(pred_point_maps, dim=0)
pred_masks = torch.cat(pred_masks, dim=0)
pred_masks = pred_masks.float() * 2 - 1
# T,H,W,3 T,H,W
pred_point_maps = normalize_point_map(pred_point_maps, pred_masks > 0)
pred_disps = 1.0 / pred_point_maps[..., 2].clamp_min(1e-3)
pred_disps = pred_disps * (pred_masks > 0)
min_disparity, max_disparity = robust_min_max(pred_disps)
pred_disps = ((pred_disps - min_disparity) / (max_disparity - min_disparity+1e-4)).clamp(0, 1)
pred_disps = pred_disps * 2 - 1
pred_point_maps[..., :2] = pred_point_maps[..., :2] / (pred_point_maps[..., 2:3] + 1e-7)
pred_point_maps[..., 2] = torch.log(pred_point_maps[..., 2] + 1e-7) * (pred_masks > 0) # [x/z, y/z, log(z)]
pred_intr_maps = point_map_xy2intrinsic_map(pred_point_maps[..., :2]).permute(0,3,1,2) # T,H,W,2
pred_point_maps = pred_point_maps.permute(0,3,1,2)
return pred_disps, pred_masks, pred_point_maps, pred_intr_maps
@torch.inference_mode()
def encode_point_map(self, point_map_vae, disparity, valid_mask, point_map, intrinsic_map, chunk_size=8):
T, _, H, W = point_map.shape
latents = []
psedo_image = disparity[:, None].repeat(1,3,1,1)
intrinsic_map = torch.norm(intrinsic_map[:, 2:4], p=2, dim=1, keepdim=False)
for i in range(0, T, chunk_size):
latent_dist = self.vae.encode(psedo_image[i : i + chunk_size].to(self.vae.dtype)).latent_dist
latent_dist = point_map_vae.encode(
torch.cat([
intrinsic_map[i:i+chunk_size, None],
point_map[i:i+chunk_size, 2:3],
disparity[i:i+chunk_size, None],
valid_mask[i:i+chunk_size, None]], dim=1),
latent_dist
)
if isinstance(latent_dist, DiagonalGaussianDistribution):
latent = latent_dist.mode()
else:
latent = latent_dist
assert isinstance(latent, torch.Tensor)
latents.append(latent)
latents = torch.cat(latents, dim=0)
latents = latents * self.vae.config.scaling_factor
return latents
@torch.no_grad()
def decode_point_map(self, point_map_vae, latents, chunk_size=8, force_projection=True, force_fixed_focal=True, use_extract_interp=False, need_resize=False, height=None, width=None):
T = latents.shape[0]
rec_intrinsic_maps = []
rec_depth_maps = []
rec_valid_masks = []
for i in range(0, T, chunk_size):
lat = latents[i:i+chunk_size]
rec_imap, rec_dmap, rec_vmask = point_map_vae.decode(
lat,
num_frames=lat.shape[0],
)
rec_intrinsic_maps.append(rec_imap)
rec_depth_maps.append(rec_dmap)
rec_valid_masks.append(rec_vmask)
rec_intrinsic_maps = torch.cat(rec_intrinsic_maps, dim=0)
rec_depth_maps = torch.cat(rec_depth_maps, dim=0)
rec_valid_masks = torch.cat(rec_valid_masks, dim=0)
if need_resize:
rec_depth_maps = F.interpolate(rec_depth_maps, (height, width), mode='nearest-exact') if use_extract_interp else F.interpolate(rec_depth_maps, (height, width), mode='bilinear', align_corners=False)
rec_valid_masks = F.interpolate(rec_valid_masks, (height, width), mode='nearest-exact') if use_extract_interp else F.interpolate(rec_valid_masks, (height, width), mode='bilinear', align_corners=False)
rec_intrinsic_maps = F.interpolate(rec_intrinsic_maps, (height, width), mode='bilinear', align_corners=False)
H, W = rec_intrinsic_maps.shape[-2], rec_intrinsic_maps.shape[-1]
mesh_grid = create_meshgrid(
H, W,
normalized_coordinates=True
).to(rec_intrinsic_maps.device, rec_intrinsic_maps.dtype, non_blocking=True)
# 1,h,w,2
rec_intrinsic_maps = torch.cat([rec_intrinsic_maps * W / np.sqrt(W**2+H**2), rec_intrinsic_maps * H / np.sqrt(W**2+H**2)], dim=1) # t,2,h,w
mesh_grid = mesh_grid.permute(0,3,1,2)
rec_valid_masks = rec_valid_masks.squeeze(1) > 0
if force_projection:
if force_fixed_focal:
nfx = (rec_intrinsic_maps[:, 0, :, :] * rec_valid_masks.float()).mean() / (rec_valid_masks.float().mean() + 1e-4)
nfy = (rec_intrinsic_maps[:, 1, :, :] * rec_valid_masks.float()).mean() / (rec_valid_masks.float().mean() + 1e-4)
rec_intrinsic_maps = torch.tensor([nfx, nfy], device=rec_intrinsic_maps.device)[None, :, None, None].repeat(T, 1, 1, 1)
else:
nfx = (rec_intrinsic_maps[:, 0, :, :] * rec_valid_masks.float()).mean(dim=[-1, -2]) / (rec_valid_masks.float().mean(dim=[-1, -2]) + 1e-4)
nfy = (rec_intrinsic_maps[:, 1, :, :] * rec_valid_masks.float()).mean(dim=[-1, -2]) / (rec_valid_masks.float().mean(dim=[-1, -2]) + 1e-4)
rec_intrinsic_maps = torch.stack([nfx, nfy], dim=-1)[:, :, None, None]
# t,2,1,1
rec_point_maps = torch.cat([rec_intrinsic_maps * mesh_grid, rec_depth_maps], dim=1).permute(0,2,3,1)
xy, z = rec_point_maps.split([2, 1], dim=-1)
z = torch.clamp_max(z, 10) # for numerical stability
z = torch.exp(z)
rec_point_maps = torch.cat([xy * z, z], dim=-1)
return rec_point_maps, rec_valid_masks
@torch.no_grad()
def __call__(
self,
video: Union[np.ndarray, torch.Tensor],
point_map_vae,
prior_model,
height: int = 320,
width: int = 640,
num_inference_steps: int = 5,
guidance_scale: float = 1.0,
window_size: Optional[int] = 14,
noise_aug_strength: float = 0.02,
decode_chunk_size: Optional[int] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
overlap: int = 4,
force_projection: bool = True,
force_fixed_focal: bool = True,
use_extract_interp: bool = False,
track_time: bool = False,
):
# video: in shape [t, h, w, c] if np.ndarray or [t, c, h, w] if torch.Tensor, in range [0, 1]
# 0. Default height and width to unet
if isinstance(video, np.ndarray):
video = torch.from_numpy(video.transpose(0, 3, 1, 2))
else:
assert isinstance(video, torch.Tensor)
height = height or video.shape[-2]
width = width or video.shape[-1]
original_height = video.shape[-2]
original_width = video.shape[-1]
num_frames = video.shape[0]
decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else 8
if num_frames <= window_size:
window_size = num_frames
overlap = 0
stride = window_size - overlap
# 1. Check inputs. Raise error if not correct
assert height % 64 == 0 and width % 64 == 0
if original_height != height or original_width != width:
need_resize = True
else:
need_resize = False
# 2. Define call parameters
batch_size = 1
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
self._guidance_scale = guidance_scale
if track_time:
start_event = torch.cuda.Event(enable_timing=True)
prior_event = torch.cuda.Event(enable_timing=True)
encode_event = torch.cuda.Event(enable_timing=True)
denoise_event = torch.cuda.Event(enable_timing=True)
decode_event = torch.cuda.Event(enable_timing=True)
start_event.record()
# 3. Encode input video
pred_disparity, pred_valid_mask, pred_point_map, pred_intrinsic_map = self.produce_priors(
prior_model,
video.to(device=device, dtype=torch.float32),
chunk_size=decode_chunk_size
) # T,H,W T,H,W T,3,H,W T,2,H,W
if need_resize:
pred_disparity = F.interpolate(pred_disparity.unsqueeze(1), (height, width), mode='bilinear', align_corners=False).squeeze(1)
pred_valid_mask = F.interpolate(pred_valid_mask.unsqueeze(1), (height, width), mode='bilinear', align_corners=False).squeeze(1)
pred_point_map = F.interpolate(pred_point_map, (height, width), mode='bilinear', align_corners=False)
pred_intrinsic_map = F.interpolate(pred_intrinsic_map, (height, width), mode='bilinear', align_corners=False)
if track_time:
prior_event.record()
torch.cuda.synchronize()
elapsed_time_ms = start_event.elapsed_time(prior_event)
print(f"Elapsed time for computing per-frame prior: {elapsed_time_ms} ms")
else:
gc.collect()
torch.cuda.empty_cache()
# 3. Encode input video
if need_resize:
video = F.interpolate(video, (height, width), mode="bicubic", align_corners=False, antialias=True).clamp(0, 1)
video = video.to(device=device, dtype=self.dtype)
video = video * 2.0 - 1.0 # [0,1] -> [-1,1], in [t, c, h, w]
video_embeddings = self.encode_video(video, chunk_size=decode_chunk_size).unsqueeze(0)
prior_latents = self.encode_point_map(
point_map_vae,
pred_disparity,
pred_valid_mask,
pred_point_map,
pred_intrinsic_map,
chunk_size=decode_chunk_size
).unsqueeze(0).to(video_embeddings.dtype) # 1,T,C,H,W
# 4. Encode input image using VAE
# pdb.set_trace()
needs_upcasting = (
self.vae.dtype == torch.float16 and self.vae.config.force_upcast
)
if needs_upcasting:
self.vae.to(dtype=torch.float32)
video_latents = self.encode_vae_video(
video.to(self.vae.dtype),
chunk_size=decode_chunk_size,
).unsqueeze(0).to(video_embeddings.dtype) # [1, t, c, h, w]
torch.cuda.empty_cache()
if track_time:
encode_event.record()
torch.cuda.synchronize()
elapsed_time_ms = prior_event.elapsed_time(encode_event)
print(f"Elapsed time for encode prior and frames: {elapsed_time_ms} ms")
else:
gc.collect()
torch.cuda.empty_cache()
# cast back to fp16 if needed
if needs_upcasting:
self.vae.to(dtype=torch.float16)
# 5. Get Added Time IDs
added_time_ids = self._get_add_time_ids(
7,
127,
noise_aug_strength,
video_embeddings.dtype,
batch_size,
1,
False,
) # [1 or 2, 3]
added_time_ids = added_time_ids.to(device)
# 6. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, None, None
)
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
# 7. Prepare latent variables
# num_channels_latents = self.unet.config.in_channels - prior_latents.shape[1]
num_channels_latents = 8
latents_init = self.prepare_latents(
batch_size,
window_size,
num_channels_latents,
height,
width,
video_embeddings.dtype,
device,
generator,
latents,
) # [1, t, c, h, w]
latents_all = None
idx_start = 0
if overlap > 0:
weights = torch.linspace(0, 1, overlap, device=device)
weights = weights.view(1, overlap, 1, 1, 1)
else:
weights = None
while idx_start < num_frames - overlap:
idx_end = min(idx_start + window_size, num_frames)
self.scheduler.set_timesteps(num_inference_steps, device=device)
# 9. Denoising loop
# latents_init = latents_init.flip(1)
latents = latents_init[:, : idx_end - idx_start].clone()
latents_init = torch.cat(
[latents_init[:, -overlap:], latents_init[:, :stride]], dim=1
)
video_latents_current = video_latents[:, idx_start:idx_end]
prior_latents_current = prior_latents[:, idx_start:idx_end]
video_embeddings_current = video_embeddings[:, idx_start:idx_end]
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if latents_all is not None and i == 0:
latents[:, :overlap] = (
latents_all[:, -overlap:]
+ latents[:, :overlap]
/ self.scheduler.init_noise_sigma
* self.scheduler.sigmas[i]
)
latent_model_input = latents
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t
) # [1 or 2, t, c, h, w]
latent_model_input = torch.cat(
[latent_model_input, video_latents_current, prior_latents_current], dim=2
)
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=video_embeddings_current,
added_time_ids=added_time_ids,
return_dict=False,
)[0]
# pdb.set_trace()
# perform guidance
if self.do_classifier_free_guidance:
latent_model_input = latents
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t
)
latent_model_input = torch.cat(
[latent_model_input, torch.zeros_like(latent_model_input), torch.zeros_like(latent_model_input)],
dim=2,
)
noise_pred_uncond = self.unet(
latent_model_input,
t,
encoder_hidden_states=torch.zeros_like(
video_embeddings_current
),
added_time_ids=added_time_ids,
return_dict=False,
)[0]
noise_pred = noise_pred_uncond + self.guidance_scale * (
noise_pred - noise_pred_uncond
)
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(
self, i, t, callback_kwargs
)
latents = callback_outputs.pop("latents", latents)
if i == len(timesteps) - 1 or (
(i + 1) > num_warmup_steps
and (i + 1) % self.scheduler.order == 0
):
progress_bar.update()
if latents_all is None:
latents_all = latents.clone()
else:
if overlap > 0:
latents_all[:, -overlap:] = latents[
:, :overlap
] * weights + latents_all[:, -overlap:] * (1 - weights)
latents_all = torch.cat([latents_all, latents[:, overlap:]], dim=1)
idx_start += stride
latents_all = 1 / self.vae.config.scaling_factor * latents_all.squeeze(0).to(torch.float32)
if track_time:
denoise_event.record()
torch.cuda.synchronize()
elapsed_time_ms = encode_event.elapsed_time(denoise_event)
print(f"Elapsed time for denoise latent: {elapsed_time_ms} ms")
else:
gc.collect()
torch.cuda.empty_cache()
point_map, valid_mask = self.decode_point_map(
point_map_vae,
latents_all,
chunk_size=decode_chunk_size,
force_projection=force_projection,
force_fixed_focal=force_fixed_focal,
use_extract_interp=use_extract_interp,
need_resize=need_resize,
height=original_height,
width=original_width)
if track_time:
decode_event.record()
torch.cuda.synchronize()
elapsed_time_ms = denoise_event.elapsed_time(decode_event)
print(f"Elapsed time for decode latent: {elapsed_time_ms} ms")
else:
gc.collect()
torch.cuda.empty_cache()
self.maybe_free_model_hooks()
# t,h,w,3 t,h,w
return point_map, valid_mask
|