File size: 22,147 Bytes
ca2145e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
from typing import Callable, Dict, List, Optional, Union
import gc

import numpy as np
import torch
import torch.nn.functional as F

from diffusers.pipelines.stable_video_diffusion.pipeline_stable_video_diffusion import (
    _resize_with_antialiasing,
    StableVideoDiffusionPipeline,
    retrieve_timesteps,
)
from diffusers.utils import logging
from kornia.utils import create_meshgrid
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

@torch.no_grad()
def normalize_point_map(point_map, valid_mask):
    # T,H,W,3 T,H,W
    norm_factor = (point_map[..., 2] * valid_mask.float()).mean() / (valid_mask.float().mean() + 1e-8)
    norm_factor = norm_factor.clip(min=1e-3)
    return point_map / norm_factor

def point_map_xy2intrinsic_map(point_map_xy):
    # *,h,w,2
    height, width = point_map_xy.shape[-3], point_map_xy.shape[-2]
    assert height % 2 == 0
    assert width % 2 == 0
    mesh_grid = create_meshgrid(
        height=height,
        width=width,
        normalized_coordinates=True,
        device=point_map_xy.device,
        dtype=point_map_xy.dtype
    )[0] # h,w,2
    assert mesh_grid.abs().min() > 1e-4
    # *,h,w,2
    mesh_grid = mesh_grid.expand_as(point_map_xy)
    nc = point_map_xy.mean(dim=-2).mean(dim=-2) # *, 2
    nc_map = nc[..., None, None, :].expand_as(point_map_xy)
    nf = ((point_map_xy - nc_map) / mesh_grid).mean(dim=-2).mean(dim=-2)
    nf_map = nf[..., None, None, :].expand_as(point_map_xy)
    # print((mesh_grid * nf_map + nc_map - point_map_xy).abs().max())

    return torch.cat([nc_map, nf_map], dim=-1)

def robust_min_max(tensor, quantile=0.99):
    T, H, W = tensor.shape
    min_vals = []
    max_vals = []
    for i in range(T):
        min_vals.append(torch.quantile(tensor[i], q=1-quantile, interpolation='nearest').item())
        max_vals.append(torch.quantile(tensor[i], q=quantile, interpolation='nearest').item())
    return min(min_vals), max(max_vals) 

class GeometryCrafterDiffPipeline(StableVideoDiffusionPipeline):

    @torch.inference_mode()
    def encode_video(
        self,
        video: torch.Tensor,
        chunk_size: int = 14,
    ) -> torch.Tensor:
        """
        :param video: [b, c, h, w] in range [-1, 1], the b may contain multiple videos or frames
        :param chunk_size: the chunk size to encode video
        :return: image_embeddings in shape of [b, 1024]
        """

        video_224 = _resize_with_antialiasing(video.float(), (224, 224))
        video_224 = (video_224 + 1.0) / 2.0  # [-1, 1] -> [0, 1]
        embeddings = []
        for i in range(0, video_224.shape[0], chunk_size):
            emb = self.feature_extractor(
                images=video_224[i : i + chunk_size],
                do_normalize=True,
                do_center_crop=False,
                do_resize=False,
                do_rescale=False,
                return_tensors="pt",
            ).pixel_values.to(video.device, dtype=video.dtype)
            embeddings.append(self.image_encoder(emb).image_embeds)  # [b, 1024]

        embeddings = torch.cat(embeddings, dim=0)  # [t, 1024]
        return embeddings

    @torch.inference_mode()
    def encode_vae_video(
        self,
        video: torch.Tensor,
        chunk_size: int = 14,
    ):
        """
        :param video: [b, c, h, w] in range [-1, 1], the b may contain multiple videos or frames
        :param chunk_size: the chunk size to encode video
        :return: vae latents in shape of [b, c, h, w]
        """
        video_latents = []
        for i in range(0, video.shape[0], chunk_size):
            video_latents.append(
                self.vae.encode(video[i : i + chunk_size]).latent_dist.mode()
            )
        video_latents = torch.cat(video_latents, dim=0)
        return video_latents
    
    @torch.inference_mode()
    def produce_priors(self, prior_model, frame, chunk_size=8):
        T, _, H, W = frame.shape 
        frame = (frame + 1) / 2
        pred_point_maps = []
        pred_masks = []
        for i in range(0, len(frame), chunk_size):
            pred_p, pred_m = prior_model.forward_image(frame[i:i+chunk_size])
            pred_point_maps.append(pred_p)
            pred_masks.append(pred_m)
        pred_point_maps = torch.cat(pred_point_maps, dim=0)
        pred_masks = torch.cat(pred_masks, dim=0)
        
        pred_masks = pred_masks.float() * 2 - 1
        
        # T,H,W,3 T,H,W
        pred_point_maps = normalize_point_map(pred_point_maps, pred_masks > 0)

        pred_disps = 1.0 / pred_point_maps[..., 2].clamp_min(1e-3)
        pred_disps = pred_disps * (pred_masks > 0)
        min_disparity, max_disparity = robust_min_max(pred_disps)
        pred_disps = ((pred_disps - min_disparity) / (max_disparity - min_disparity+1e-4)).clamp(0, 1)
        pred_disps = pred_disps * 2 - 1

        pred_point_maps[..., :2] = pred_point_maps[..., :2] / (pred_point_maps[..., 2:3] + 1e-7)
        pred_point_maps[..., 2] = torch.log(pred_point_maps[..., 2] + 1e-7) * (pred_masks > 0) # [x/z, y/z, log(z)]

        pred_intr_maps = point_map_xy2intrinsic_map(pred_point_maps[..., :2]).permute(0,3,1,2) # T,H,W,2      
        pred_point_maps = pred_point_maps.permute(0,3,1,2)
        
        return pred_disps, pred_masks, pred_point_maps, pred_intr_maps
    
    @torch.inference_mode()
    def encode_point_map(self, point_map_vae, disparity, valid_mask, point_map, intrinsic_map, chunk_size=8):
        T, _, H, W = point_map.shape
        latents = []

        psedo_image = disparity[:, None].repeat(1,3,1,1)
        intrinsic_map = torch.norm(intrinsic_map[:, 2:4], p=2, dim=1, keepdim=False)

        for i in range(0, T, chunk_size):
            latent_dist = self.vae.encode(psedo_image[i : i + chunk_size].to(self.vae.dtype)).latent_dist
            latent_dist = point_map_vae.encode(                
                torch.cat([
                    intrinsic_map[i:i+chunk_size, None],
                    point_map[i:i+chunk_size, 2:3], 
                    disparity[i:i+chunk_size, None], 
                    valid_mask[i:i+chunk_size, None]], dim=1),
                latent_dist
            )
            if isinstance(latent_dist, DiagonalGaussianDistribution):
                latent = latent_dist.mode()
            else:
                latent = latent_dist
            
            assert isinstance(latent, torch.Tensor)    
            latents.append(latent)
        latents = torch.cat(latents, dim=0)
        latents = latents * self.vae.config.scaling_factor
        return latents

    @torch.no_grad()
    def decode_point_map(self, point_map_vae, latents, chunk_size=8, force_projection=True, force_fixed_focal=True, use_extract_interp=False, need_resize=False, height=None, width=None):
        T = latents.shape[0]
        rec_intrinsic_maps = []
        rec_depth_maps = []
        rec_valid_masks = []
        for i in range(0, T, chunk_size):
            lat = latents[i:i+chunk_size] 
            rec_imap, rec_dmap, rec_vmask = point_map_vae.decode(  
                lat,           
                num_frames=lat.shape[0],
            )
            rec_intrinsic_maps.append(rec_imap)
            rec_depth_maps.append(rec_dmap)
            rec_valid_masks.append(rec_vmask)
        
        rec_intrinsic_maps = torch.cat(rec_intrinsic_maps, dim=0)
        rec_depth_maps = torch.cat(rec_depth_maps, dim=0)
        rec_valid_masks = torch.cat(rec_valid_masks, dim=0)
        
        if need_resize:
            rec_depth_maps = F.interpolate(rec_depth_maps, (height, width), mode='nearest-exact') if use_extract_interp else F.interpolate(rec_depth_maps, (height, width), mode='bilinear', align_corners=False)
            rec_valid_masks = F.interpolate(rec_valid_masks, (height, width), mode='nearest-exact') if use_extract_interp else F.interpolate(rec_valid_masks, (height, width), mode='bilinear', align_corners=False)
            rec_intrinsic_maps = F.interpolate(rec_intrinsic_maps, (height, width), mode='bilinear', align_corners=False)

        H, W = rec_intrinsic_maps.shape[-2], rec_intrinsic_maps.shape[-1]
        mesh_grid = create_meshgrid(
            H, W, 
            normalized_coordinates=True
        ).to(rec_intrinsic_maps.device, rec_intrinsic_maps.dtype, non_blocking=True)
        # 1,h,w,2
        rec_intrinsic_maps = torch.cat([rec_intrinsic_maps * W / np.sqrt(W**2+H**2), rec_intrinsic_maps * H / np.sqrt(W**2+H**2)], dim=1) # t,2,h,w
        mesh_grid = mesh_grid.permute(0,3,1,2)
        rec_valid_masks = rec_valid_masks.squeeze(1) > 0

        if force_projection:
            if force_fixed_focal:
                nfx = (rec_intrinsic_maps[:, 0, :, :] * rec_valid_masks.float()).mean() / (rec_valid_masks.float().mean() + 1e-4) 
                nfy = (rec_intrinsic_maps[:, 1, :, :] * rec_valid_masks.float()).mean() / (rec_valid_masks.float().mean() + 1e-4) 
                rec_intrinsic_maps = torch.tensor([nfx, nfy], device=rec_intrinsic_maps.device)[None, :, None, None].repeat(T, 1, 1, 1)    
            else:
                nfx = (rec_intrinsic_maps[:, 0, :, :] * rec_valid_masks.float()).mean(dim=[-1, -2]) / (rec_valid_masks.float().mean(dim=[-1, -2]) + 1e-4) 
                nfy = (rec_intrinsic_maps[:, 1, :, :] * rec_valid_masks.float()).mean(dim=[-1, -2]) / (rec_valid_masks.float().mean(dim=[-1, -2]) + 1e-4) 
                rec_intrinsic_maps = torch.stack([nfx, nfy], dim=-1)[:, :, None, None]
                # t,2,1,1

        rec_point_maps = torch.cat([rec_intrinsic_maps * mesh_grid, rec_depth_maps], dim=1).permute(0,2,3,1)
        xy, z = rec_point_maps.split([2, 1], dim=-1)
        z = torch.clamp_max(z, 10) # for numerical stability
        z = torch.exp(z)
        rec_point_maps = torch.cat([xy * z, z], dim=-1)

        return rec_point_maps, rec_valid_masks


    @torch.no_grad()
    def __call__(
        self,
        video: Union[np.ndarray, torch.Tensor],
        point_map_vae,
        prior_model,
        height: int = 320,
        width: int = 640,
        num_inference_steps: int = 5,
        guidance_scale: float = 1.0,
        window_size: Optional[int] = 14,
        noise_aug_strength: float = 0.02,
        decode_chunk_size: Optional[int] = None,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        overlap: int = 4,
        force_projection: bool = True,
        force_fixed_focal: bool = True,
        use_extract_interp: bool = False,
        track_time: bool = False,
    ):
        
        # video: in shape [t, h, w, c] if np.ndarray or [t, c, h, w] if torch.Tensor, in range [0, 1]
        
        # 0. Default height and width to unet
        if isinstance(video, np.ndarray):
            video = torch.from_numpy(video.transpose(0, 3, 1, 2))
        else:
            assert isinstance(video, torch.Tensor)
        height = height or video.shape[-2]
        width = width or video.shape[-1]
        original_height = video.shape[-2]
        original_width = video.shape[-1]
        num_frames = video.shape[0]
        decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else 8
        if num_frames <= window_size:
            window_size = num_frames
            overlap = 0
        stride = window_size - overlap

        # 1. Check inputs. Raise error if not correct
        assert height % 64 == 0 and width % 64 == 0
        if original_height != height or original_width != width:
            need_resize = True
        else:
            need_resize = False

        # 2. Define call parameters
        batch_size = 1
        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        self._guidance_scale = guidance_scale

        if track_time:
            start_event = torch.cuda.Event(enable_timing=True)
            prior_event = torch.cuda.Event(enable_timing=True)
            encode_event = torch.cuda.Event(enable_timing=True)
            denoise_event = torch.cuda.Event(enable_timing=True)
            decode_event = torch.cuda.Event(enable_timing=True)
            start_event.record()

        # 3. Encode input video
        pred_disparity, pred_valid_mask, pred_point_map, pred_intrinsic_map = self.produce_priors(
            prior_model, 
            video.to(device=device, dtype=torch.float32),
            chunk_size=decode_chunk_size
        ) # T,H,W T,H,W T,3,H,W T,2,H,W

        if need_resize:
            pred_disparity = F.interpolate(pred_disparity.unsqueeze(1), (height, width), mode='bilinear', align_corners=False).squeeze(1)
            pred_valid_mask = F.interpolate(pred_valid_mask.unsqueeze(1), (height, width), mode='bilinear', align_corners=False).squeeze(1)
            pred_point_map = F.interpolate(pred_point_map, (height, width), mode='bilinear', align_corners=False)
            pred_intrinsic_map = F.interpolate(pred_intrinsic_map, (height, width), mode='bilinear', align_corners=False)


        if track_time:
            prior_event.record()
            torch.cuda.synchronize()
            elapsed_time_ms = start_event.elapsed_time(prior_event)
            print(f"Elapsed time for computing per-frame prior: {elapsed_time_ms} ms")
        else:
            gc.collect()
            torch.cuda.empty_cache()


        # 3. Encode input video
        if need_resize:
            video = F.interpolate(video, (height, width), mode="bicubic", align_corners=False, antialias=True).clamp(0, 1)
        video = video.to(device=device, dtype=self.dtype)
        video = video * 2.0 - 1.0  # [0,1] -> [-1,1], in [t, c, h, w]

        video_embeddings = self.encode_video(video, chunk_size=decode_chunk_size).unsqueeze(0)
        prior_latents = self.encode_point_map(
            point_map_vae,
            pred_disparity, 
            pred_valid_mask, 
            pred_point_map, 
            pred_intrinsic_map, 
            chunk_size=decode_chunk_size
        ).unsqueeze(0).to(video_embeddings.dtype) # 1,T,C,H,W

        # 4. Encode input image using VAE

        # pdb.set_trace()
        needs_upcasting = (
            self.vae.dtype == torch.float16 and self.vae.config.force_upcast
        )
        if needs_upcasting:
            self.vae.to(dtype=torch.float32)

        video_latents = self.encode_vae_video(
            video.to(self.vae.dtype),
            chunk_size=decode_chunk_size,
        ).unsqueeze(0).to(video_embeddings.dtype)  # [1, t, c, h, w]

        torch.cuda.empty_cache()

        if track_time:
            encode_event.record()
            torch.cuda.synchronize()
            elapsed_time_ms = prior_event.elapsed_time(encode_event)
            print(f"Elapsed time for encode prior and frames: {elapsed_time_ms} ms")
        else:
            gc.collect()
            torch.cuda.empty_cache()

        # cast back to fp16 if needed
        if needs_upcasting:
            self.vae.to(dtype=torch.float16)

        # 5. Get Added Time IDs
        added_time_ids = self._get_add_time_ids(
            7,
            127,
            noise_aug_strength,
            video_embeddings.dtype,
            batch_size,
            1,
            False,
        )  # [1 or 2, 3]
        added_time_ids = added_time_ids.to(device)

        # 6. Prepare timesteps
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler, num_inference_steps, device, None, None
        )
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        self._num_timesteps = len(timesteps)

        # 7. Prepare latent variables
        # num_channels_latents = self.unet.config.in_channels - prior_latents.shape[1]
        num_channels_latents = 8
        latents_init = self.prepare_latents(
            batch_size,
            window_size,
            num_channels_latents,
            height,
            width,
            video_embeddings.dtype,
            device,
            generator,
            latents,
        )  # [1, t, c, h, w]
        latents_all = None

        idx_start = 0
        if overlap > 0:
            weights = torch.linspace(0, 1, overlap, device=device)
            weights = weights.view(1, overlap, 1, 1, 1)
        else:
            weights = None

        while idx_start < num_frames - overlap:
            idx_end = min(idx_start + window_size, num_frames)
            self.scheduler.set_timesteps(num_inference_steps, device=device)
            # 9. Denoising loop
            # latents_init = latents_init.flip(1)
            latents = latents_init[:, : idx_end - idx_start].clone()
            latents_init = torch.cat(
                [latents_init[:, -overlap:], latents_init[:, :stride]], dim=1
            )

            video_latents_current = video_latents[:, idx_start:idx_end]
            prior_latents_current = prior_latents[:, idx_start:idx_end]
            video_embeddings_current = video_embeddings[:, idx_start:idx_end]

            with self.progress_bar(total=num_inference_steps) as progress_bar:
                for i, t in enumerate(timesteps):
                    if latents_all is not None and i == 0:
                        latents[:, :overlap] = (
                            latents_all[:, -overlap:]
                            + latents[:, :overlap]
                            / self.scheduler.init_noise_sigma
                            * self.scheduler.sigmas[i]
                        )

                    latent_model_input = latents

                    latent_model_input = self.scheduler.scale_model_input(
                        latent_model_input, t
                    )  # [1 or 2, t, c, h, w]
                    latent_model_input = torch.cat(
                        [latent_model_input, video_latents_current, prior_latents_current], dim=2
                    )
                    noise_pred = self.unet(
                        latent_model_input,
                        t,
                        encoder_hidden_states=video_embeddings_current,
                        added_time_ids=added_time_ids,
                        return_dict=False,
                    )[0]
                    # pdb.set_trace()
                    # perform guidance
                    if self.do_classifier_free_guidance:
                        latent_model_input = latents
                        latent_model_input = self.scheduler.scale_model_input(
                            latent_model_input, t
                        )
                        latent_model_input = torch.cat(
                            [latent_model_input, torch.zeros_like(latent_model_input), torch.zeros_like(latent_model_input)],
                            dim=2,
                        )
                        noise_pred_uncond = self.unet(
                            latent_model_input,
                            t,
                            encoder_hidden_states=torch.zeros_like(
                                video_embeddings_current
                            ),
                            added_time_ids=added_time_ids,
                            return_dict=False,
                        )[0]
                        noise_pred = noise_pred_uncond + self.guidance_scale * (
                            noise_pred - noise_pred_uncond
                        )
                    latents = self.scheduler.step(noise_pred, t, latents).prev_sample

                    if callback_on_step_end is not None:
                        callback_kwargs = {}
                        for k in callback_on_step_end_tensor_inputs:
                            callback_kwargs[k] = locals()[k]
                        callback_outputs = callback_on_step_end(
                            self, i, t, callback_kwargs
                        )

                        latents = callback_outputs.pop("latents", latents)

                    if i == len(timesteps) - 1 or (
                        (i + 1) > num_warmup_steps
                        and (i + 1) % self.scheduler.order == 0
                    ):
                        progress_bar.update()

            if latents_all is None:
                latents_all = latents.clone()
            else:
                if overlap > 0:
                    latents_all[:, -overlap:] = latents[
                        :, :overlap
                    ] * weights + latents_all[:, -overlap:] * (1 - weights)
                latents_all = torch.cat([latents_all, latents[:, overlap:]], dim=1)

            idx_start += stride

        latents_all = 1 / self.vae.config.scaling_factor * latents_all.squeeze(0).to(torch.float32)

        if track_time:
            denoise_event.record()
            torch.cuda.synchronize()
            elapsed_time_ms = encode_event.elapsed_time(denoise_event)
            print(f"Elapsed time for denoise latent: {elapsed_time_ms} ms")
        else:
            gc.collect()
            torch.cuda.empty_cache()

        point_map, valid_mask = self.decode_point_map(
            point_map_vae, 
            latents_all, 
            chunk_size=decode_chunk_size, 
            force_projection=force_projection,
            force_fixed_focal=force_fixed_focal,
            use_extract_interp=use_extract_interp, 
            need_resize=need_resize, 
            height=original_height, 
            width=original_width)
        

        if track_time:
            decode_event.record()
            torch.cuda.synchronize()
            elapsed_time_ms = denoise_event.elapsed_time(decode_event)
            print(f"Elapsed time for decode latent: {elapsed_time_ms} ms")
        else:
            gc.collect()
            torch.cuda.empty_cache()

        self.maybe_free_model_hooks()
        # t,h,w,3   t,h,w
        return point_map, valid_mask