Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,723 Bytes
ca2145e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
from typing import Dict, Tuple, Union
import torch
import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils.accelerate_utils import apply_forward_hook
from diffusers.models.attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution, Encoder
from diffusers.utils import is_torch_version
from diffusers.models.unets.unet_3d_blocks import UpBlockTemporalDecoder, MidBlockTemporalDecoder
from diffusers.models.resnet import SpatioTemporalResBlock
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
class PMapTemporalDecoder(nn.Module):
def __init__(
self,
in_channels: int = 4,
out_channels: Tuple[int] = (1, 1, 1),
block_out_channels: Tuple[int] = (128, 256, 512, 512),
layers_per_block: int = 2,
):
super().__init__()
self.conv_in = nn.Conv2d(
in_channels,
block_out_channels[-1],
kernel_size=3,
stride=1,
padding=1
)
self.mid_block = MidBlockTemporalDecoder(
num_layers=layers_per_block,
in_channels=block_out_channels[-1],
out_channels=block_out_channels[-1],
attention_head_dim=block_out_channels[-1],
)
# up
self.up_blocks = nn.ModuleList([])
reversed_block_out_channels = list(reversed(block_out_channels))
output_channel = reversed_block_out_channels[0]
for i in range(len(block_out_channels)):
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
up_block = UpBlockTemporalDecoder(
num_layers=layers_per_block + 1,
in_channels=prev_output_channel,
out_channels=output_channel,
add_upsample=not is_final_block,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
self.out_blocks = nn.ModuleList([])
self.time_conv_outs = nn.ModuleList([])
for out_channel in out_channels:
self.out_blocks.append(
nn.ModuleList([
nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-6),
nn.ReLU(inplace=True),
nn.Conv2d(
block_out_channels[0],
block_out_channels[0] // 2,
kernel_size=3,
padding=1
),
SpatioTemporalResBlock(
in_channels=block_out_channels[0] // 2,
out_channels=block_out_channels[0] // 2,
temb_channels=None,
eps=1e-6,
temporal_eps=1e-5,
merge_factor=0.0,
merge_strategy="learned",
switch_spatial_to_temporal_mix=True
),
nn.ReLU(inplace=True),
nn.Conv2d(
block_out_channels[0] // 2,
out_channel,
kernel_size=1,
)
])
)
conv_out_kernel_size = (3, 1, 1)
padding = [int(k // 2) for k in conv_out_kernel_size]
self.time_conv_outs.append(nn.Conv3d(
in_channels=out_channel,
out_channels=out_channel,
kernel_size=conv_out_kernel_size,
padding=padding,
))
self.gradient_checkpointing = False
def forward(
self,
sample: torch.Tensor,
image_only_indicator: torch.Tensor,
num_frames: int = 1,
):
sample = self.conv_in(sample)
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
if is_torch_version(">=", "1.11.0"):
# middle
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block),
sample,
image_only_indicator,
use_reentrant=False,
)
sample = sample.to(upscale_dtype)
# up
for up_block in self.up_blocks:
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(up_block),
sample,
image_only_indicator,
use_reentrant=False,
)
else:
# middle
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block),
sample,
image_only_indicator,
)
sample = sample.to(upscale_dtype)
# up
for up_block in self.up_blocks:
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(up_block),
sample,
image_only_indicator,
)
else:
# middle
sample = self.mid_block(sample, image_only_indicator=image_only_indicator)
sample = sample.to(upscale_dtype)
# up
for up_block in self.up_blocks:
sample = up_block(sample, image_only_indicator=image_only_indicator)
# post-process
output = []
for out_block, time_conv_out in zip(self.out_blocks, self.time_conv_outs):
x = sample
for layer in out_block:
if isinstance(layer, SpatioTemporalResBlock):
x = layer(x, None, image_only_indicator)
else:
x = layer(x)
batch_frames, channels, height, width = x.shape
batch_size = batch_frames // num_frames
x = x[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4)
x = time_conv_out(x)
x = x.permute(0, 2, 1, 3, 4).reshape(batch_frames, channels, height, width)
output.append(x)
return output
class PMapAutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
in_channels: int = 4,
latent_channels: int = 4,
enc_down_block_types: Tuple[str] = (
"DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"
),
enc_block_out_channels: Tuple[int] = (128, 256, 512, 512),
enc_layers_per_block: int = 2,
dec_block_out_channels: Tuple[int] = (128, 256, 512, 512),
dec_layers_per_block: int = 2,
out_channels: Tuple[int] = (1, 1, 1),
mid_block_add_attention: bool = True,
offset_scale_factor: float = 0.1,
**kwargs
):
super().__init__()
self.encoder = Encoder(
in_channels=in_channels,
out_channels=latent_channels,
down_block_types=enc_down_block_types,
block_out_channels=enc_block_out_channels,
layers_per_block=enc_layers_per_block,
double_z=False,
mid_block_add_attention=mid_block_add_attention
)
zero_module(self.encoder.conv_out)
self.offset_scale_factor = offset_scale_factor
self.decoder = PMapTemporalDecoder(
in_channels=latent_channels,
block_out_channels=dec_block_out_channels,
layers_per_block=dec_layers_per_block,
out_channels=out_channels
)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (Encoder, PMapTemporalDecoder)):
module.gradient_checkpointing = value
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnProcessor()
else:
raise ValueError(
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
)
self.set_attn_processor(processor)
@apply_forward_hook
def encode(
self,
x: torch.Tensor,
latent_dist: DiagonalGaussianDistribution
) -> DiagonalGaussianDistribution:
h = self.encoder(x)
offset = h * self.offset_scale_factor
param = latent_dist.parameters.to(h.dtype)
mean, logvar = torch.chunk(param, 2, dim=1)
posterior = DiagonalGaussianDistribution(torch.cat([mean + offset, logvar], dim=1))
return posterior
@apply_forward_hook
def decode(
self,
z: torch.Tensor,
num_frames: int
) -> torch.Tensor:
batch_size = z.shape[0] // num_frames
image_only_indicator = torch.zeros(batch_size, num_frames, dtype=z.dtype, device=z.device)
decoded = self.decoder(z, num_frames=num_frames, image_only_indicator=image_only_indicator)
return decoded |