Spaces:
Runtime error
Runtime error
envs
Browse files
app.py
CHANGED
@@ -20,13 +20,13 @@ import spaces
|
|
20 |
from PIL import Image
|
21 |
from omegaconf import OmegaConf
|
22 |
from einops import rearrange, repeat
|
23 |
-
from torchvision import transforms
|
24 |
from transformers import CLIPTextModel, CLIPTokenizer
|
25 |
from diffusers import AutoencoderKL, DDIMScheduler
|
26 |
|
27 |
from pipelines.pipeline_imagecoductor import ImageConductorPipeline
|
28 |
from modules.unet import UNet3DConditionFlowModel
|
29 |
-
from utils.gradio_utils import ensure_dirname, split_filename, visualize_drag, image2pil,
|
30 |
from utils.utils import create_image_controlnet, create_flow_controlnet, interpolate_trajectory, load_weights, load_model, bivariate_Gaussian
|
31 |
from utils.lora_utils import add_LoRA_to_controlnet
|
32 |
from utils.visualizer import Visualizer, vis_flow_to_video
|
@@ -382,9 +382,12 @@ class ImageConductor:
|
|
382 |
eval_mode = True,
|
383 |
).videos
|
384 |
|
385 |
-
outputs_path = os.path.join(output_dir, f'output_{i}_{id}.mp4')
|
386 |
-
vis_video = (rearrange(sample[0], 'c t h w -> t h w c') * 255.).clip(0, 255)
|
387 |
-
torchvision.io.write_video(outputs_path, vis_video, fps=8, video_codec='h264', options={'crf': '10'})
|
|
|
|
|
|
|
388 |
|
389 |
return {output_image: visualized_drag, output_video: outputs_path}
|
390 |
|
@@ -619,10 +622,13 @@ with block:
|
|
619 |
examples_type = gr.Textbox(label="Examples Type (Ignore) ", value="", visible=False)
|
620 |
|
621 |
with gr.Column(scale=7):
|
622 |
-
output_video = gr.Video(
|
623 |
-
|
624 |
-
|
625 |
-
|
|
|
|
|
|
|
626 |
|
627 |
|
628 |
with gr.Row():
|
|
|
20 |
from PIL import Image
|
21 |
from omegaconf import OmegaConf
|
22 |
from einops import rearrange, repeat
|
23 |
+
from torchvision import transforms,utils
|
24 |
from transformers import CLIPTextModel, CLIPTokenizer
|
25 |
from diffusers import AutoencoderKL, DDIMScheduler
|
26 |
|
27 |
from pipelines.pipeline_imagecoductor import ImageConductorPipeline
|
28 |
from modules.unet import UNet3DConditionFlowModel
|
29 |
+
from utils.gradio_utils import ensure_dirname, split_filename, visualize_drag, image2pil, save_videos_grid
|
30 |
from utils.utils import create_image_controlnet, create_flow_controlnet, interpolate_trajectory, load_weights, load_model, bivariate_Gaussian
|
31 |
from utils.lora_utils import add_LoRA_to_controlnet
|
32 |
from utils.visualizer import Visualizer, vis_flow_to_video
|
|
|
382 |
eval_mode = True,
|
383 |
).videos
|
384 |
|
385 |
+
# outputs_path = os.path.join(output_dir, f'output_{i}_{id}.mp4')
|
386 |
+
# vis_video = (rearrange(sample[0], 'c t h w -> t h w c') * 255.).clip(0, 255)
|
387 |
+
# torchvision.io.write_video(outputs_path, vis_video, fps=8, video_codec='h264', options={'crf': '10'})
|
388 |
+
|
389 |
+
outputs_path = os.path.join(output_dir, f'output_{i}_{id}.gif')
|
390 |
+
save_videos_grid(sample[0][None], outputs_path)
|
391 |
|
392 |
return {output_image: visualized_drag, output_video: outputs_path}
|
393 |
|
|
|
622 |
examples_type = gr.Textbox(label="Examples Type (Ignore) ", value="", visible=False)
|
623 |
|
624 |
with gr.Column(scale=7):
|
625 |
+
# output_video = gr.Video(
|
626 |
+
# label="Output Video",
|
627 |
+
# width=384,
|
628 |
+
# height=256)
|
629 |
+
output_video = gr.Image(label="Output Video",
|
630 |
+
height=256,
|
631 |
+
width=384,)
|
632 |
|
633 |
|
634 |
with gr.Row():
|