Spaces:
Runtime error
Runtime error
envs
Browse files- app-23.py → app-12.py +64 -65
- app.py +65 -64
app-23.py → app-12.py
RENAMED
@@ -150,70 +150,69 @@ image_examples = [
|
|
150 |
"object",
|
151 |
11318446767408804497,
|
152 |
"",
|
153 |
-
"
|
154 |
-
json.load(open("__asset__/trajs/object/turtle-1.json"))
|
155 |
],
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
]
|
198 |
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
|
218 |
|
219 |
|
@@ -301,17 +300,17 @@ class ImageConductor:
|
|
301 |
|
302 |
self.blur_kernel = blur_kernel
|
303 |
|
304 |
-
@spaces.GPU(duration=
|
305 |
def run(self, first_frame_path, tracking_points, prompt, drag_mode, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, personalized, examples_type):
|
306 |
print("Run!")
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
|
316 |
original_width, original_height=384, 256
|
317 |
if isinstance(tracking_points, list):
|
@@ -321,7 +320,7 @@ class ImageConductor:
|
|
321 |
|
322 |
print("input_all_points", input_all_points)
|
323 |
resized_all_points = [tuple([tuple([float(e1[0]*self.width/original_width), float(e1[1]*self.height/original_height)]) for e1 in e]) for e in input_all_points]
|
324 |
-
|
325 |
dir, base, ext = split_filename(first_frame_path)
|
326 |
id = base.split('_')[-1]
|
327 |
|
@@ -568,7 +567,7 @@ with block:
|
|
568 |
width=384,
|
569 |
model_length=16
|
570 |
)
|
571 |
-
first_frame_path_var = gr.State()
|
572 |
tracking_points_var = gr.State([])
|
573 |
|
574 |
with gr.Row():
|
@@ -649,7 +648,7 @@ with block:
|
|
649 |
example = gr.Examples(
|
650 |
label="Input Example",
|
651 |
examples=image_examples,
|
652 |
-
inputs=[input_image, prompt, drag_mode, seed, personalized,
|
653 |
examples_per_page=10,
|
654 |
cache_examples=False,
|
655 |
)
|
|
|
150 |
"object",
|
151 |
11318446767408804497,
|
152 |
"",
|
153 |
+
"turtle"
|
|
|
154 |
],
|
155 |
|
156 |
+
["__asset__/images/object/rose-1.jpg",
|
157 |
+
"a red rose engulfed in flames.",
|
158 |
+
"object",
|
159 |
+
6854275249656120509,
|
160 |
+
"",
|
161 |
+
"rose",
|
162 |
+
],
|
163 |
|
164 |
+
["__asset__/images/object/jellyfish-1.jpg",
|
165 |
+
"intricate detailing,photorealism,hyperrealistic, glowing jellyfish mushroom, flying, starry sky, bokeh, golden ratio composition.",
|
166 |
+
"object",
|
167 |
+
17966188172968903484,
|
168 |
+
"HelloObject",
|
169 |
+
"jellyfish"
|
170 |
+
],
|
171 |
|
172 |
|
173 |
+
["__asset__/images/camera/lush-1.jpg",
|
174 |
+
"detailed craftsmanship, photorealism, hyperrealistic, roaring waterfall, misty spray, lush greenery, vibrant rainbow, golden ratio composition.",
|
175 |
+
"camera",
|
176 |
+
7970487946960948963,
|
177 |
+
"HelloObject",
|
178 |
+
"lush",
|
179 |
+
],
|
180 |
|
181 |
+
["__asset__/images/camera/tusun-1.jpg",
|
182 |
+
"tusuncub with its mouth open, blurry, open mouth, fangs, photo background, looking at viewer, tongue, full body, solo, cute and lovely, Beautiful and realistic eye details, perfect anatomy, Nonsense, pure background, Centered-Shot, realistic photo, photograph, 4k, hyper detailed, DSLR, 24 Megapixels, 8mm Lens, Full Frame, film grain, Global Illumination, studio Lighting, Award Winning Photography, diffuse reflection, ray tracing.",
|
183 |
+
"camera",
|
184 |
+
996953226890228361,
|
185 |
+
"TUSUN",
|
186 |
+
"tusun",
|
187 |
+
],
|
188 |
|
189 |
+
["__asset__/images/camera/painting-1.jpg",
|
190 |
+
"A oil painting.",
|
191 |
+
"camera",
|
192 |
+
16867854766769816385,
|
193 |
+
"",
|
194 |
+
"painting"
|
195 |
+
],
|
196 |
]
|
197 |
|
198 |
|
199 |
+
POINTS = {
|
200 |
+
'turtle': "__asset__/trajs/object/turtle-1.json",
|
201 |
+
'rose': "__asset__/trajs/object/rose-1.json",
|
202 |
+
'jellyfish': "__asset__/trajs/object/jellyfish-1.json",
|
203 |
+
'lush': "__asset__/trajs/camera/lush-1.json",
|
204 |
+
'tusun': "__asset__/trajs/camera/tusun-1.json",
|
205 |
+
'painting': "__asset__/trajs/camera/painting-1.json",
|
206 |
+
}
|
207 |
|
208 |
+
IMAGE_PATH = {
|
209 |
+
'turtle': "__asset__/images/object/turtle-1.jpg",
|
210 |
+
'rose': "__asset__/images/object/rose-1.jpg",
|
211 |
+
'jellyfish': "__asset__/images/object/jellyfish-1.jpg",
|
212 |
+
'lush': "__asset__/images/camera/lush-1.jpg",
|
213 |
+
'tusun': "__asset__/images/camera/tusun-1.jpg",
|
214 |
+
'painting': "__asset__/images/camera/painting-1.jpg",
|
215 |
+
}
|
216 |
|
217 |
|
218 |
|
|
|
300 |
|
301 |
self.blur_kernel = blur_kernel
|
302 |
|
303 |
+
@spaces.GPU(duration=180)
|
304 |
def run(self, first_frame_path, tracking_points, prompt, drag_mode, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, personalized, examples_type):
|
305 |
print("Run!")
|
306 |
+
if examples_type != "":
|
307 |
+
### for adapting high version gradio
|
308 |
+
tracking_points = gr.State([])
|
309 |
+
first_frame_path = IMAGE_PATH[examples_type]
|
310 |
+
points = json.load(open(POINTS[examples_type]))
|
311 |
+
tracking_points.value.extend(points)
|
312 |
+
print("example first_frame_path", first_frame_path)
|
313 |
+
print("example tracking_points", tracking_points.value)
|
314 |
|
315 |
original_width, original_height=384, 256
|
316 |
if isinstance(tracking_points, list):
|
|
|
320 |
|
321 |
print("input_all_points", input_all_points)
|
322 |
resized_all_points = [tuple([tuple([float(e1[0]*self.width/original_width), float(e1[1]*self.height/original_height)]) for e1 in e]) for e in input_all_points]
|
323 |
+
|
324 |
dir, base, ext = split_filename(first_frame_path)
|
325 |
id = base.split('_')[-1]
|
326 |
|
|
|
567 |
width=384,
|
568 |
model_length=16
|
569 |
)
|
570 |
+
first_frame_path_var = gr.State(value=None)
|
571 |
tracking_points_var = gr.State([])
|
572 |
|
573 |
with gr.Row():
|
|
|
648 |
example = gr.Examples(
|
649 |
label="Input Example",
|
650 |
examples=image_examples,
|
651 |
+
inputs=[input_image, prompt, drag_mode, seed, personalized, examples_type],
|
652 |
examples_per_page=10,
|
653 |
cache_examples=False,
|
654 |
)
|
app.py
CHANGED
@@ -150,69 +150,70 @@ image_examples = [
|
|
150 |
"object",
|
151 |
11318446767408804497,
|
152 |
"",
|
153 |
-
"turtle"
|
|
|
154 |
],
|
155 |
|
156 |
-
["__asset__/images/object/rose-1.jpg",
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
|
164 |
-
["__asset__/images/object/jellyfish-1.jpg",
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
|
172 |
|
173 |
-
["__asset__/images/camera/lush-1.jpg",
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
|
181 |
-
["__asset__/images/camera/tusun-1.jpg",
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
|
189 |
-
["__asset__/images/camera/painting-1.jpg",
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
]
|
197 |
|
198 |
|
199 |
-
POINTS = {
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
}
|
207 |
|
208 |
-
IMAGE_PATH = {
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
}
|
216 |
|
217 |
|
218 |
|
@@ -300,17 +301,17 @@ class ImageConductor:
|
|
300 |
|
301 |
self.blur_kernel = blur_kernel
|
302 |
|
303 |
-
@spaces.GPU(duration=
|
304 |
def run(self, first_frame_path, tracking_points, prompt, drag_mode, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, personalized, examples_type):
|
305 |
print("Run!")
|
306 |
-
if examples_type != "":
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
|
315 |
original_width, original_height=384, 256
|
316 |
if isinstance(tracking_points, list):
|
@@ -320,7 +321,7 @@ class ImageConductor:
|
|
320 |
|
321 |
print("input_all_points", input_all_points)
|
322 |
resized_all_points = [tuple([tuple([float(e1[0]*self.width/original_width), float(e1[1]*self.height/original_height)]) for e1 in e]) for e in input_all_points]
|
323 |
-
|
324 |
dir, base, ext = split_filename(first_frame_path)
|
325 |
id = base.split('_')[-1]
|
326 |
|
@@ -567,7 +568,7 @@ with block:
|
|
567 |
width=384,
|
568 |
model_length=16
|
569 |
)
|
570 |
-
first_frame_path_var = gr.State(
|
571 |
tracking_points_var = gr.State([])
|
572 |
|
573 |
with gr.Row():
|
@@ -648,7 +649,7 @@ with block:
|
|
648 |
example = gr.Examples(
|
649 |
label="Input Example",
|
650 |
examples=image_examples,
|
651 |
-
inputs=[input_image, prompt, drag_mode, seed, personalized,
|
652 |
examples_per_page=10,
|
653 |
cache_examples=False,
|
654 |
)
|
|
|
150 |
"object",
|
151 |
11318446767408804497,
|
152 |
"",
|
153 |
+
"__asset__/images/object/turtle-1.jpg",
|
154 |
+
json.load(open("__asset__/trajs/object/turtle-1.json"))
|
155 |
],
|
156 |
|
157 |
+
# ["__asset__/images/object/rose-1.jpg",
|
158 |
+
# "a red rose engulfed in flames.",
|
159 |
+
# "object",
|
160 |
+
# 6854275249656120509,
|
161 |
+
# "",
|
162 |
+
# "rose",
|
163 |
+
# ],
|
164 |
|
165 |
+
# ["__asset__/images/object/jellyfish-1.jpg",
|
166 |
+
# "intricate detailing,photorealism,hyperrealistic, glowing jellyfish mushroom, flying, starry sky, bokeh, golden ratio composition.",
|
167 |
+
# "object",
|
168 |
+
# 17966188172968903484,
|
169 |
+
# "HelloObject",
|
170 |
+
# "jellyfish"
|
171 |
+
# ],
|
172 |
|
173 |
|
174 |
+
# ["__asset__/images/camera/lush-1.jpg",
|
175 |
+
# "detailed craftsmanship, photorealism, hyperrealistic, roaring waterfall, misty spray, lush greenery, vibrant rainbow, golden ratio composition.",
|
176 |
+
# "camera",
|
177 |
+
# 7970487946960948963,
|
178 |
+
# "HelloObject",
|
179 |
+
# "lush",
|
180 |
+
# ],
|
181 |
|
182 |
+
# ["__asset__/images/camera/tusun-1.jpg",
|
183 |
+
# "tusuncub with its mouth open, blurry, open mouth, fangs, photo background, looking at viewer, tongue, full body, solo, cute and lovely, Beautiful and realistic eye details, perfect anatomy, Nonsense, pure background, Centered-Shot, realistic photo, photograph, 4k, hyper detailed, DSLR, 24 Megapixels, 8mm Lens, Full Frame, film grain, Global Illumination, studio Lighting, Award Winning Photography, diffuse reflection, ray tracing.",
|
184 |
+
# "camera",
|
185 |
+
# 996953226890228361,
|
186 |
+
# "TUSUN",
|
187 |
+
# "tusun",
|
188 |
+
# ],
|
189 |
|
190 |
+
# ["__asset__/images/camera/painting-1.jpg",
|
191 |
+
# "A oil painting.",
|
192 |
+
# "camera",
|
193 |
+
# 16867854766769816385,
|
194 |
+
# "",
|
195 |
+
# "painting"
|
196 |
+
# ],
|
197 |
]
|
198 |
|
199 |
|
200 |
+
# POINTS = {
|
201 |
+
# 'turtle': "__asset__/trajs/object/turtle-1.json",
|
202 |
+
# 'rose': "__asset__/trajs/object/rose-1.json",
|
203 |
+
# 'jellyfish': "__asset__/trajs/object/jellyfish-1.json",
|
204 |
+
# 'lush': "__asset__/trajs/camera/lush-1.json",
|
205 |
+
# 'tusun': "__asset__/trajs/camera/tusun-1.json",
|
206 |
+
# 'painting': "__asset__/trajs/camera/painting-1.json",
|
207 |
+
# }
|
208 |
|
209 |
+
# IMAGE_PATH = {
|
210 |
+
# 'turtle': "__asset__/images/object/turtle-1.jpg",
|
211 |
+
# 'rose': "__asset__/images/object/rose-1.jpg",
|
212 |
+
# 'jellyfish': "__asset__/images/object/jellyfish-1.jpg",
|
213 |
+
# 'lush': "__asset__/images/camera/lush-1.jpg",
|
214 |
+
# 'tusun': "__asset__/images/camera/tusun-1.jpg",
|
215 |
+
# 'painting': "__asset__/images/camera/painting-1.jpg",
|
216 |
+
# }
|
217 |
|
218 |
|
219 |
|
|
|
301 |
|
302 |
self.blur_kernel = blur_kernel
|
303 |
|
304 |
+
@spaces.GPU(duration=20)
|
305 |
def run(self, first_frame_path, tracking_points, prompt, drag_mode, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, personalized, examples_type):
|
306 |
print("Run!")
|
307 |
+
# if examples_type != "":
|
308 |
+
# ### for adapting high version gradio
|
309 |
+
# tracking_points = gr.State([])
|
310 |
+
# first_frame_path = IMAGE_PATH[examples_type]
|
311 |
+
# points = json.load(open(POINTS[examples_type]))
|
312 |
+
# tracking_points.value.extend(points)
|
313 |
+
# print("example first_frame_path", first_frame_path)
|
314 |
+
# print("example tracking_points", tracking_points.value)
|
315 |
|
316 |
original_width, original_height=384, 256
|
317 |
if isinstance(tracking_points, list):
|
|
|
321 |
|
322 |
print("input_all_points", input_all_points)
|
323 |
resized_all_points = [tuple([tuple([float(e1[0]*self.width/original_width), float(e1[1]*self.height/original_height)]) for e1 in e]) for e in input_all_points]
|
324 |
+
print("first_frame_path", first_frame_path)
|
325 |
dir, base, ext = split_filename(first_frame_path)
|
326 |
id = base.split('_')[-1]
|
327 |
|
|
|
568 |
width=384,
|
569 |
model_length=16
|
570 |
)
|
571 |
+
first_frame_path_var = gr.State()
|
572 |
tracking_points_var = gr.State([])
|
573 |
|
574 |
with gr.Row():
|
|
|
649 |
example = gr.Examples(
|
650 |
label="Input Example",
|
651 |
examples=image_examples,
|
652 |
+
inputs=[input_image, prompt, drag_mode, seed, personalized, first_frame_path_var, tracking_points_var],
|
653 |
examples_per_page=10,
|
654 |
cache_examples=False,
|
655 |
)
|