import gradio as gr
import torch
import sys
import html
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from threading import Thread
model_name_or_path = 'TencentARC/LLaMA-Pro-8B-Instruct'
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path)
model.half().cuda()
def convert_message(message):
message_text = ""
if message["content"] is None and message["role"] == "assistant":
message_text += "<|assistant|>\n" # final msg
elif message["role"] == "system":
message_text += "<|system|>\n" + message["content"].strip() + "\n"
elif message["role"] == "user":
message_text += "<|user|>\n" + message["content"].strip() + "\n"
elif message["role"] == "assistant":
message_text += "<|assistant|>\n" + message["content"].strip() + "\n"
else:
raise ValueError("Invalid role: {}".format(message["role"]))
# gradio cleaning - it converts stuff to html entities
# we would need special handling for where we want to keep the html...
message_text = html.unescape(message_text)
# it also converts newlines to
, undo this.
message_text = message_text.replace("
", "\n")
return message_text
def convert_history(chat_history, max_input_length=1024):
history_text = ""
idx = len(chat_history) - 1
# add messages in reverse order until we hit max_input_length
while len(tokenizer(history_text).input_ids) < max_input_length and idx >= 0:
user_message, chatbot_message = chat_history[idx]
user_message = convert_message({"role": "user", "content": user_message})
chatbot_message = convert_message({"role": "assistant", "content": chatbot_message})
history_text = user_message + chatbot_message + history_text
idx = idx - 1
# if nothing was added, add <|assistant|> to start generation.
if history_text == "":
history_text = "<|assistant|>\n"
return history_text
@torch.inference_mode()
def instruct(instruction, max_token_output=1024):
input_text = instruction
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
input_ids = tokenizer(input_text, return_tensors='pt', truncation=False)
input_ids["input_ids"] = input_ids["input_ids"].cuda()
input_ids["attention_mask"] = input_ids["attention_mask"].cuda()
generation_kwargs = dict(input_ids, streamer=streamer, max_new_tokens=max_token_output)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
return streamer
with gr.Blocks() as demo:
# recreating the original qa demo in blocks
with gr.Tab("QA Demo"):
with gr.Row():
instruction = gr.Textbox(label="Input")
output = gr.Textbox(label="Output")
greet_btn = gr.Button("Submit")
def yield_instruct(instruction):
# quick prompt hack:
instruction = "<|user|>\n" + instruction + "\n<|assistant|>\n"
output = ""
for token in instruct(instruction):
output += token
yield output
greet_btn.click(fn=yield_instruct, inputs=[instruction], outputs=output, api_name="greet")
# chatbot-style model
with gr.Tab("Chatbot"):
chatbot = gr.Chatbot([], elem_id="chatbot")
msg = gr.Textbox()
clear = gr.Button("Clear")
# fn to add user message to history
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history):
prompt = convert_history(history)
streaming_out = instruct(prompt)
history[-1][1] = ""
for new_token in streaming_out:
history[-1][1] += new_token
yield history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, chatbot, chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.queue().launch(share=True)