Spaces:
Running
on
L4
Running
on
L4
Add openpose model
Browse files- app_base.py +10 -0
- assets/README.md +1 -0
- assets/people.jpg +3 -0
- model.py +30 -4
app_base.py
CHANGED
@@ -122,6 +122,16 @@ def create_demo(model: Model) -> gr.Blocks:
|
|
122 |
0,
|
123 |
True,
|
124 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
]
|
126 |
|
127 |
with gr.Blocks() as demo:
|
|
|
122 |
0,
|
123 |
True,
|
124 |
],
|
125 |
+
[
|
126 |
+
"assets/people.jpg",
|
127 |
+
"A couple, 4k photo, highly detailed",
|
128 |
+
"openpose",
|
129 |
+
"Photographic",
|
130 |
+
5.0,
|
131 |
+
1.0,
|
132 |
+
0,
|
133 |
+
True,
|
134 |
+
],
|
135 |
]
|
136 |
|
137 |
with gr.Blocks() as demo:
|
assets/README.md
CHANGED
@@ -5,3 +5,4 @@ These images were from the following URL:
|
|
5 |
- https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/org_lin.jpg
|
6 |
- https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/org_mid.jpg
|
7 |
- https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/org_zeo.jpg
|
|
|
|
5 |
- https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/org_lin.jpg
|
6 |
- https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/org_mid.jpg
|
7 |
- https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/org_zeo.jpg
|
8 |
+
- https://huggingface.co/Adapter/t2iadapter/resolve/main/people.jpg
|
assets/people.jpg
ADDED
Git LFS Details
|
model.py
CHANGED
@@ -2,12 +2,14 @@ import gc
|
|
2 |
import os
|
3 |
from abc import ABC, abstractmethod
|
4 |
|
|
|
5 |
import PIL.Image
|
6 |
import torch
|
7 |
from controlnet_aux import (
|
8 |
CannyDetector,
|
9 |
LineartDetector,
|
10 |
MidasDetector,
|
|
|
11 |
PidiNetDetector,
|
12 |
ZoeDetector,
|
13 |
)
|
@@ -83,6 +85,7 @@ ADAPTER_REPO_IDS = {
|
|
83 |
"lineart": "TencentARC/t2i-adapter-lineart-sdxl-1.0",
|
84 |
"depth-midas": "TencentARC/t2i-adapter-depth-midas-sdxl-1.0",
|
85 |
"depth-zoe": "TencentARC/t2i-adapter-depth-zoe-sdxl-1.0",
|
|
|
86 |
# "recolor": "TencentARC/t2i-adapter-recolor-sdxl-1.0",
|
87 |
}
|
88 |
ADAPTER_NAMES = list(ADAPTER_REPO_IDS.keys())
|
@@ -114,7 +117,8 @@ class LineartPreprocessor(Preprocessor):
|
|
114 |
self.model = LineartDetector.from_pretrained("lllyasviel/Annotators")
|
115 |
|
116 |
def to(self, device: torch.device | str) -> Preprocessor:
|
117 |
-
|
|
|
118 |
|
119 |
def __call__(self, image: PIL.Image.Image) -> PIL.Image.Image:
|
120 |
return self.model(image, detect_resolution=384, image_resolution=1024)
|
@@ -127,18 +131,35 @@ class MidasPreprocessor(Preprocessor):
|
|
127 |
)
|
128 |
|
129 |
def to(self, device: torch.device | str) -> Preprocessor:
|
130 |
-
|
|
|
131 |
|
132 |
def __call__(self, image: PIL.Image.Image) -> PIL.Image.Image:
|
133 |
return self.model(image, detect_resolution=512, image_resolution=1024)
|
134 |
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
class PidiNetPreprocessor(Preprocessor):
|
137 |
def __init__(self):
|
138 |
self.model = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
|
139 |
|
140 |
def to(self, device: torch.device | str) -> Preprocessor:
|
141 |
-
|
|
|
142 |
|
143 |
def __call__(self, image: PIL.Image.Image) -> PIL.Image.Image:
|
144 |
return self.model(image, detect_resolution=512, image_resolution=1024, apply_filter=True)
|
@@ -159,7 +180,8 @@ class ZoePreprocessor(Preprocessor):
|
|
159 |
)
|
160 |
|
161 |
def to(self, device: torch.device | str) -> Preprocessor:
|
162 |
-
|
|
|
163 |
|
164 |
def __call__(self, image: PIL.Image.Image) -> PIL.Image.Image:
|
165 |
return self.model(image, gamma_corrected=True, image_resolution=1024)
|
@@ -175,6 +197,7 @@ if PRELOAD_PREPROCESSORS_IN_GPU_MEMORY:
|
|
175 |
"lineart": LineartPreprocessor().to(device),
|
176 |
"depth-midas": MidasPreprocessor().to(device),
|
177 |
"depth-zoe": ZoePreprocessor().to(device),
|
|
|
178 |
"recolor": RecolorPreprocessor().to(device),
|
179 |
}
|
180 |
|
@@ -188,6 +211,7 @@ elif PRELOAD_PREPROCESSORS_IN_CPU_MEMORY:
|
|
188 |
"lineart": LineartPreprocessor(),
|
189 |
"depth-midas": MidasPreprocessor(),
|
190 |
"depth-zoe": ZoePreprocessor(),
|
|
|
191 |
"recolor": RecolorPreprocessor(),
|
192 |
}
|
193 |
|
@@ -207,6 +231,8 @@ else:
|
|
207 |
return MidasPreprocessor()
|
208 |
elif adapter_name == "depth-zoe":
|
209 |
return ZoePreprocessor()
|
|
|
|
|
210 |
elif adapter_name == "recolor":
|
211 |
return RecolorPreprocessor()
|
212 |
else:
|
|
|
2 |
import os
|
3 |
from abc import ABC, abstractmethod
|
4 |
|
5 |
+
import numpy as np
|
6 |
import PIL.Image
|
7 |
import torch
|
8 |
from controlnet_aux import (
|
9 |
CannyDetector,
|
10 |
LineartDetector,
|
11 |
MidasDetector,
|
12 |
+
OpenposeDetector,
|
13 |
PidiNetDetector,
|
14 |
ZoeDetector,
|
15 |
)
|
|
|
85 |
"lineart": "TencentARC/t2i-adapter-lineart-sdxl-1.0",
|
86 |
"depth-midas": "TencentARC/t2i-adapter-depth-midas-sdxl-1.0",
|
87 |
"depth-zoe": "TencentARC/t2i-adapter-depth-zoe-sdxl-1.0",
|
88 |
+
"openpose": "TencentARC/t2i-adapter-openpose-sdxl-1.0",
|
89 |
# "recolor": "TencentARC/t2i-adapter-recolor-sdxl-1.0",
|
90 |
}
|
91 |
ADAPTER_NAMES = list(ADAPTER_REPO_IDS.keys())
|
|
|
117 |
self.model = LineartDetector.from_pretrained("lllyasviel/Annotators")
|
118 |
|
119 |
def to(self, device: torch.device | str) -> Preprocessor:
|
120 |
+
self.model.to(device)
|
121 |
+
return self
|
122 |
|
123 |
def __call__(self, image: PIL.Image.Image) -> PIL.Image.Image:
|
124 |
return self.model(image, detect_resolution=384, image_resolution=1024)
|
|
|
131 |
)
|
132 |
|
133 |
def to(self, device: torch.device | str) -> Preprocessor:
|
134 |
+
self.model.to(device)
|
135 |
+
return self
|
136 |
|
137 |
def __call__(self, image: PIL.Image.Image) -> PIL.Image.Image:
|
138 |
return self.model(image, detect_resolution=512, image_resolution=1024)
|
139 |
|
140 |
|
141 |
+
class OpenposePreprocessor(Preprocessor):
|
142 |
+
def __init__(self):
|
143 |
+
self.model = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
|
144 |
+
|
145 |
+
def to(self, device: torch.device | str) -> Preprocessor:
|
146 |
+
self.model.to(device)
|
147 |
+
return self
|
148 |
+
|
149 |
+
def __call__(self, image: PIL.Image.Image) -> PIL.Image.Image:
|
150 |
+
out = self.model(image, detect_resolution=512, image_resolution=1024)
|
151 |
+
out = np.array(out)[:, :, ::-1]
|
152 |
+
out = PIL.Image.fromarray(np.uint8(out))
|
153 |
+
return out
|
154 |
+
|
155 |
+
|
156 |
class PidiNetPreprocessor(Preprocessor):
|
157 |
def __init__(self):
|
158 |
self.model = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
|
159 |
|
160 |
def to(self, device: torch.device | str) -> Preprocessor:
|
161 |
+
self.model.to(device)
|
162 |
+
return self
|
163 |
|
164 |
def __call__(self, image: PIL.Image.Image) -> PIL.Image.Image:
|
165 |
return self.model(image, detect_resolution=512, image_resolution=1024, apply_filter=True)
|
|
|
180 |
)
|
181 |
|
182 |
def to(self, device: torch.device | str) -> Preprocessor:
|
183 |
+
self.model.to(device)
|
184 |
+
return self
|
185 |
|
186 |
def __call__(self, image: PIL.Image.Image) -> PIL.Image.Image:
|
187 |
return self.model(image, gamma_corrected=True, image_resolution=1024)
|
|
|
197 |
"lineart": LineartPreprocessor().to(device),
|
198 |
"depth-midas": MidasPreprocessor().to(device),
|
199 |
"depth-zoe": ZoePreprocessor().to(device),
|
200 |
+
"openpose": OpenposePreprocessor().to(device),
|
201 |
"recolor": RecolorPreprocessor().to(device),
|
202 |
}
|
203 |
|
|
|
211 |
"lineart": LineartPreprocessor(),
|
212 |
"depth-midas": MidasPreprocessor(),
|
213 |
"depth-zoe": ZoePreprocessor(),
|
214 |
+
"openpose": OpenposePreprocessor(),
|
215 |
"recolor": RecolorPreprocessor(),
|
216 |
}
|
217 |
|
|
|
231 |
return MidasPreprocessor()
|
232 |
elif adapter_name == "depth-zoe":
|
233 |
return ZoePreprocessor()
|
234 |
+
elif adapter_name == "openpose":
|
235 |
+
return OpenposePreprocessor()
|
236 |
elif adapter_name == "recolor":
|
237 |
return RecolorPreprocessor()
|
238 |
else:
|