Spaces:
Build error
Build error
import logging | |
import os | |
from fvcore.common.timer import Timer | |
from detectron2.structures import BoxMode | |
from fvcore.common.file_io import PathManager | |
from detectron2.data import DatasetCatalog, MetadataCatalog | |
from lvis import LVIS | |
logger = logging.getLogger(__name__) | |
__all__ = ["load_vg_json", "register_vg_instances"] | |
def register_vg_instances(name, metadata, json_file, image_root): | |
""" | |
""" | |
DatasetCatalog.register(name, lambda: load_vg_json( | |
json_file, image_root, name)) | |
MetadataCatalog.get(name).set( | |
json_file=json_file, image_root=image_root, | |
evaluator_type="vg", **metadata | |
) | |
def get_vg_meta(): | |
categories = [{'supercategory': 'object', 'id': 1, 'name': 'object'}] | |
vg_categories = sorted(categories, key=lambda x: x["id"]) | |
thing_classes = [k["name"] for k in vg_categories] | |
meta = {"thing_classes": thing_classes} | |
return meta | |
def load_vg_json(json_file, image_root, dataset_name=None): | |
json_file = PathManager.get_local_path(json_file) | |
timer = Timer() | |
lvis_api = LVIS(json_file) | |
if timer.seconds() > 1: | |
logger.info("Loading {} takes {:.2f} seconds.".format( | |
json_file, timer.seconds())) | |
img_ids = sorted(lvis_api.imgs.keys()) | |
imgs = lvis_api.load_imgs(img_ids) | |
anns = [lvis_api.img_ann_map[img_id] for img_id in img_ids] | |
ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image] | |
assert len(set(ann_ids)) == len(ann_ids), \ | |
"Annotation ids in '{}' are not unique".format(json_file) | |
imgs_anns = list(zip(imgs, anns)) | |
logger.info("Loaded {} images in the LVIS v1 format from {}".format( | |
len(imgs_anns), json_file)) | |
dataset_dicts = [] | |
for (img_dict, anno_dict_list) in imgs_anns: | |
record = {} | |
if "file_name" in img_dict: | |
file_name = img_dict["file_name"] | |
record["file_name"] = os.path.join(image_root, file_name) | |
record["height"] = int(img_dict["height"]) | |
record["width"] = int(img_dict["width"]) | |
image_id = record["image_id"] = img_dict["id"] | |
objs = [] | |
for anno in anno_dict_list: | |
assert anno["image_id"] == image_id | |
if anno.get('iscrowd', 0) > 0: | |
continue | |
obj = {"bbox": anno["bbox"], "bbox_mode": BoxMode.XYWH_ABS} | |
obj["category_id"] = 0 | |
obj["object_description"] = anno["caption"] | |
objs.append(obj) | |
record["annotations"] = objs | |
if len(record["annotations"]) == 0: | |
continue | |
record["task"] = "DenseCap" | |
dataset_dicts.append(record) | |
return dataset_dicts | |
_CUSTOM_SPLITS_LVIS = { | |
"vg_train": ("vg/images", "vg/annotations/train.json"), | |
"vg_test": ("vg/images", "vg/annotations/test.json"), | |
} | |
for key, (image_root, json_file) in _CUSTOM_SPLITS_LVIS.items(): | |
register_vg_instances( | |
key, | |
get_vg_meta(), | |
os.path.join("datasets", json_file) if "://" not in json_file else json_file, | |
os.path.join("datasets", image_root), | |
) |