Spaces:
Running
Running
File size: 1,243 Bytes
651db78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import numpy as np
import cv2
import pytesseract
def extract_number_plate_text(image):
# Convert PIL image to OpenCV format
image = np.array(image)
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# Apply preprocessing
filtered = cv2.bilateralFilter(gray, 11, 17, 17) # Noise reduction
edged = cv2.Canny(filtered, 30, 200) # Edge detection
# Find contours
contours, _ = cv2.findContours(edged, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours = sorted(contours, key=cv2.contourArea, reverse=True)[:10]
plate_text = "No plate detected"
# Loop over contours to find the number plate
for contour in contours:
perimeter = cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, 0.02 * perimeter, True)
if len(approx) == 4: # Possible number plate
x, y, w, h = cv2.boundingRect(approx)
plate_region = gray[y:y+h, x:x+w]
# Preprocessing for OCR
plate_region = cv2.threshold(plate_region, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
# Extract text using Tesseract
plate_text = pytesseract.image_to_string(plate_region, config="--psm 8").strip()
break
return plate_text |