Thabit11's picture
Update app.py
41fe9e4 verified
import gradio as gr
from fastai.vision.all import *
import skimage
# Load the model
learn = load_learner('export.pkl')
# Get labels
labels = learn.dls.vocab
# Prediction function
def predict(img):
# Resize the image inside the function (if required)
img = PILImage.create(img)
img = img.resize((512, 512)) # Resize image to (512, 512)
pred, pred_idx, probs = learn.predict(img)
prediction = str(pred)
return prediction
# App configuration
title = "Breast cancer detection with Deep Transfer Learning(ResNet18)."
description = """
<p style='text-align: center'>
<b>Efficient and Explainable Framework for Breast Cancer Detect and Diagnose By SANA ABDALJILI</b><be>
<b>As a radiologist or oncologist, it is crucial to know what is wrong with a breast x-ray image.</b><br>
<b>Upload the breast X-ray image to know what is wrong with a patient's breast with or without implant.</b><br>
This is a product of project of software intelligence courses under professor Prof. Tiejian Luo
<br>
</p>
"""
article = "<p style='text-align: center'>Web app is built and managed by Addai Fosberg</p>"
examples = ['img1.jpeg', 'img2.jpeg']
# Update the interface components
gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"), # Use the 'type' argument instead of 'shape'
outputs=gr.Label(num_top_classes=3),
title=title,
description=description,
article=article,
examples=examples
).launch()