import gradio as gr from fastai.vision.all import * learn = load_learner('export.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Breast cancer detection with Deep Transfer Learning(ResNet18)." description = "Upload a breast X-ray image to detect potential issues." article = "Web app built and managed by Addai Fosberg" examples = ['img1.jpeg', 'img2.jpeg'] iface = gr.Interface( fn=predict, inputs=gr.Image(), outputs=gr.Label(num_top_classes=3), title=title, description=description, article=article, examples=examples, enable_queue=True ) iface.launch()