File size: 5,242 Bytes
58eb520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import streamlit as st
import pandas as pd
import plotly.express as px
from datetime import datetime

excel_file_name = 'updated_dataset.csv'
# Streamlit title
st.title("Bangladesh Accident Monitoring System (BAMS)")


# Display a note to the user
st.write("Please Note, First Date must be smaller than Last date. Example: First Date = 25-08-2024 and Last Date = 28-08-2024")

# Get today's date
today = datetime.strptime(datetime.today().strftime('%d-%m-%Y'), '%d-%m-%Y')

# Input fields for date range
start = st.date_input("Enter first date", max_value=today, format="DD-MM-YYYY")
start_string = start.strftime('%d-%m-%Y')
end = st.date_input("Enter last date", max_value=today, format="DD-MM-YYYY")
end_string = end.strftime('%d-%m-%Y')

# Button to generate dataset based on date range
if st.button("Generate Dataset"):
    # Read the selected excel file
    df3 = pd.read_csv(excel_file_name)

    # Convert 'Publish Date' column to datetime with 'day-month-year' format
    df3['Publish Date'] = pd.to_datetime(df3['Publish Date'], format='%d-%m-%Y')

    # Convert user input dates to datetime
    start_date = pd.to_datetime(start_string, format='%d-%m-%Y')
    end_date = pd.to_datetime(end_string, format='%d-%m-%Y')

    # Filter rows based on the specified date range
    filtered_entries = df3[(df3['Publish Date'] >= start_date) & (df3['Publish Date'] <= end_date)]
    filtered_entries.reset_index(inplace=True, drop=True)

    # Display the filtered data
    st.dataframe(filtered_entries)
    
    # Create a bar chart for accident count over days
    if not filtered_entries.empty:
        # Accident count over days
        accident_counts = filtered_entries['Accident Date'].value_counts().sort_index()
        accident_counts = accident_counts.reset_index()
        accident_counts.columns = ['Accident Date', 'Accident Count']

        fig1 = px.bar(accident_counts, 
                      x='Accident Date', 
                      y='Accident Count', 
                      title="Accident Count Over Days",
                      labels={'Accident Date': 'Date', 'Accident Count': 'Number of Accidents'})
        st.plotly_chart(fig1)

        # Bar chart showing number of people killed each day
        # Grouping by 'Publish Date' and summing 'Killed' column
        killed_per_day = filtered_entries.groupby('Accident Date')['Killed'].sum().reset_index()
        killed_per_day.columns = ['Accident Date', 'Total Killed']
        
        fig2 = px.bar(killed_per_day, 
                      x='Accident Date', 
                      y='Total Killed', 
                      title="Number of People Killed Each Day",
                      labels={'Accident Date': 'Date', 'Total Killed': 'Number of People Killed'},
                      color='Total Killed',
                      color_continuous_scale='Reds')
        st.plotly_chart(fig2)

        # Bar chart showing the number of accidents in each district
        district_accidents = filtered_entries['District'].value_counts().reset_index()
        district_accidents.columns = ['District', 'Number of Accidents']
        fig3 = px.bar(district_accidents, 
                      x='District', 
                      y='Number of Accidents',
                      title="Accidents in Each District",
                      labels={'Number of Accidents': 'Number of Accidents', 'District': 'District'},
                      color='Number of Accidents',
                      color_continuous_scale='Blues')
        st.plotly_chart(fig3)

        ### Pie Chart Code ###
        yes_count=0
        no_count=0
        not_available_count=0
        for i in range(len(filtered_entries)):
            if ('Yes' in filtered_entries['Pedestrian_Involved'][i] or 'yes' in filtered_entries['Pedestrian_Involved'][i]): yes_count+=1
            if ('No' in filtered_entries['Pedestrian_Involved'][i] or 'no' in filtered_entries['Pedestrian_Involved'][i]): no_count+=1
            if ('Not Available' in filtered_entries['Pedestrian_Involved'][i]): not_available_count+=1
        Pedestrian_Involved_list = ['Yes', 'No', 'Not Available']
        Count_list = [yes_count, no_count, not_available_count]
        # dictionary of lists 
        dict = {'Pedestrian Involved': Pedestrian_Involved_list, 'Count':Count_list} 
        pedestrian_involvement = pd.DataFrame(dict)
        # Pie chart showing the percentage of accidents involving pedestrians vs. those that don't
        # pedestrian_involvement = filtered_entries['Pedestrian_Involved'].value_counts().reset_index()
        # pedestrian_involvement.columns = ['Pedestrian Involved', 'Count']

        fig4 = px.pie(pedestrian_involvement, 
                        names='Pedestrian Involved', 
                        values='Count', 
                        title="Accidents Involving Pedestrians",
                        labels={'Pedestrian Involved': 'Pedestrian Involved'})
        st.plotly_chart(fig4)
        
    else:
        st.write("No data available for the selected date range.")

# Display selected start and end dates
st.write("Start date is:", start)
st.write("End date is:", end)