Thamed-Chowdhury commited on
Commit
2284aa5
·
verified ·
1 Parent(s): 4e758fd

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +91 -61
app.py CHANGED
@@ -41,67 +41,97 @@ if st.button("Generate Dataset"):
41
 
42
  # Create a bar chart for accident count over days
43
  if not filtered_entries.empty:
44
- # Accident count over days
45
- accident_counts = filtered_entries['Accident Date'].value_counts().sort_index()
46
- accident_counts = accident_counts.reset_index()
47
- accident_counts.columns = ['Accident Date', 'Accident Count']
48
-
49
- fig1 = px.bar(accident_counts,
50
- x='Accident Date',
51
- y='Accident Count',
52
- title="Accident Count Over Days",
53
- labels={'Accident Date': 'Date', 'Accident Count': 'Number of Accidents'})
54
- st.plotly_chart(fig1)
55
-
56
- # Bar chart showing number of people killed each day
57
- # Grouping by 'Publish Date' and summing 'Killed' column
58
- killed_per_day = filtered_entries.groupby('Accident Date')['Killed'].sum().reset_index()
59
- killed_per_day.columns = ['Accident Date', 'Total Killed']
60
-
61
- fig2 = px.bar(killed_per_day,
62
- x='Accident Date',
63
- y='Total Killed',
64
- title="Number of People Killed Each Day",
65
- labels={'Accident Date': 'Date', 'Total Killed': 'Number of People Killed'},
66
- color='Total Killed',
67
- color_continuous_scale='Reds')
68
- st.plotly_chart(fig2)
69
-
70
- # Bar chart showing the number of accidents in each district
71
- district_accidents = filtered_entries['District'].value_counts().reset_index()
72
- district_accidents.columns = ['District', 'Number of Accidents']
73
- fig3 = px.bar(district_accidents,
74
- x='District',
75
- y='Number of Accidents',
76
- title="Accidents in Each District",
77
- labels={'Number of Accidents': 'Number of Accidents', 'District': 'District'},
78
- color='Number of Accidents',
79
- color_continuous_scale='Blues')
80
- st.plotly_chart(fig3)
81
-
82
- ### Pie Chart Code ###
83
- yes_count=0
84
- no_count=0
85
- not_available_count=0
86
- for i in range(len(filtered_entries)):
87
- if ('Yes' in filtered_entries['Pedestrian_Involved'][i] or 'yes' in filtered_entries['Pedestrian_Involved'][i]): yes_count+=1
88
- if ('No' in filtered_entries['Pedestrian_Involved'][i] or 'no' in filtered_entries['Pedestrian_Involved'][i]): no_count+=1
89
- if ('Not Available' in filtered_entries['Pedestrian_Involved'][i]): not_available_count+=1
90
- Pedestrian_Involved_list = ['Yes', 'No', 'Not Available']
91
- Count_list = [yes_count, no_count, not_available_count]
92
- # dictionary of lists
93
- dict = {'Pedestrian Involved': Pedestrian_Involved_list, 'Count':Count_list}
94
- pedestrian_involvement = pd.DataFrame(dict)
95
- # Pie chart showing the percentage of accidents involving pedestrians vs. those that don't
96
- # pedestrian_involvement = filtered_entries['Pedestrian_Involved'].value_counts().reset_index()
97
- # pedestrian_involvement.columns = ['Pedestrian Involved', 'Count']
98
-
99
- fig4 = px.pie(pedestrian_involvement,
100
- names='Pedestrian Involved',
101
- values='Count',
102
- title="Accidents Involving Pedestrians",
103
- labels={'Pedestrian Involved': 'Pedestrian Involved'})
104
- st.plotly_chart(fig4)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
 
106
  else:
107
  st.write("No data available for the selected date range.")
 
41
 
42
  # Create a bar chart for accident count over days
43
  if not filtered_entries.empty:
44
+ # Create a bar chart for accident count over days
45
+ if not filtered_entries.empty:
46
+ # Fixing date formats
47
+ # for i in range(len(filtered_entries)):
48
+ # if '/' in filtered_entries['Publish Date'][i]:
49
+ # day=int(filtered_entries['Publish Date'][i].split('/')[0])
50
+ # mon=int(filtered_entries['Publish Date'][i].split('/')[1])
51
+ # yr=int(filtered_entries['Publish Date'][i].split('/')[2])
52
+ # filtered_entries['Publish Date'][i]=f"{day}-{mon}-{yr}"
53
+ import pandas as pd
54
+ import plotly.express as px
55
+
56
+ # Convert 'Accident Date' to datetime format
57
+ filtered_entries['Accident Date'] = pd.to_datetime(filtered_entries['Accident Date'], format='%d-%m-%Y')
58
+
59
+ # Count accidents per date and sort by date
60
+ accident_counts = filtered_entries['Accident Date'].value_counts().sort_index()
61
+
62
+ # Reset the index and rename columns
63
+ accident_counts = accident_counts.reset_index()
64
+ accident_counts.columns = ['Accident Date', 'Accident Count']
65
+
66
+ # Convert 'Accident Date' back to string format
67
+ accident_counts['Accident Date'] = accident_counts['Accident Date'].dt.strftime('%d-%m-%Y')
68
+ filtered_entries['Accident Date'] = accident_counts['Accident Date']
69
+ fig1 = px.bar(accident_counts,
70
+ x='Accident Date',
71
+ y='Accident Count',
72
+ title="Accident Count Over Days",
73
+ labels={'Accident Date': 'Date', 'Accident Count': 'Number of Accidents'},
74
+ color='Accident Count',
75
+ color_continuous_scale='Viridis')
76
+ st.plotly_chart(fig1)
77
+ # Convert 'Accident Date' to datetime format
78
+ filtered_entries['Accident Date'] = pd.to_datetime(filtered_entries['Accident Date'], format='%d-%m-%Y')
79
+
80
+ # Group by 'Accident Date' and sum the 'Killed' column
81
+ killed_per_day = filtered_entries.groupby('Accident Date')['Killed'].sum().reset_index()
82
+ killed_per_day.columns = ['Accident Date', 'Total Killed']
83
+
84
+ # Sort the dates in ascending order
85
+ killed_per_day = killed_per_day.sort_values(by='Accident Date')
86
+
87
+ # Convert 'Accident Date' back to string format
88
+ killed_per_day['Accident Date'] = killed_per_day['Accident Date'].dt.strftime('%d-%m-%Y')
89
+
90
+ fig2 = px.bar(killed_per_day,
91
+ x='Accident Date',
92
+ y='Total Killed',
93
+ title="Number of People Killed Each Day",
94
+ labels={'Accident Date': 'Date', 'Total Killed': 'Number of People Killed'},
95
+ color='Total Killed',
96
+ color_continuous_scale='Reds')
97
+ st.plotly_chart(fig2)
98
+
99
+ # Bar chart showing the number of accidents in each district
100
+ district_accidents = filtered_entries['District'].value_counts().reset_index()
101
+ district_accidents.columns = ['District', 'Number of Accidents']
102
+ fig3 = px.bar(district_accidents,
103
+ x='District',
104
+ y='Number of Accidents',
105
+ title="Accidents in Each District",
106
+ labels={'Number of Accidents': 'Number of Accidents', 'District': 'District'},
107
+ color='Number of Accidents',
108
+ color_continuous_scale='Cividis')
109
+ st.plotly_chart(fig3)
110
+
111
+ ### Pie Chart Code ###
112
+ yes_count=0
113
+ no_count=0
114
+ not_available_count=0
115
+ for i in range(len(filtered_entries)):
116
+ if ('Yes' in filtered_entries['Pedestrian_Involved'][i] or 'yes' in filtered_entries['Pedestrian_Involved'][i]): yes_count+=1
117
+ if ('No' in filtered_entries['Pedestrian_Involved'][i] or 'no' in filtered_entries['Pedestrian_Involved'][i]): no_count+=1
118
+ if ('Not Available' in filtered_entries['Pedestrian_Involved'][i]): not_available_count+=1
119
+ Pedestrian_Involved_list = ['Yes', 'No', 'Not Available']
120
+ Count_list = [yes_count, no_count, not_available_count]
121
+ # dictionary of lists
122
+ dict = {'Pedestrian Involved': Pedestrian_Involved_list, 'Count':Count_list}
123
+ pedestrian_involvement = pd.DataFrame(dict)
124
+ # Pie chart showing the percentage of accidents involving pedestrians vs. those that don't
125
+ # pedestrian_involvement = filtered_entries['Pedestrian_Involved'].value_counts().reset_index()
126
+ # pedestrian_involvement.columns = ['Pedestrian Involved', 'Count']
127
+
128
+ fig4 = px.pie(pedestrian_involvement,
129
+ names='Pedestrian Involved',
130
+ values='Count',
131
+ title="Accidents Involving Pedestrians",
132
+ labels={'Pedestrian Involved': 'Pedestrian Involved'},
133
+ color_discrete_sequence=['Green', 'Red', 'Blue'])
134
+ st.plotly_chart(fig4)
135
 
136
  else:
137
  st.write("No data available for the selected date range.")